Iafusco D, Stazi M, Cotichini R et al (2002) Permanent diabetes mellitus in the first year of life. Diabetologia 45(6):798–804. https://doi.org/10.1007/S00125-002-0837-2
Article CAS PubMed Google Scholar
Edghill EL, Dix RJ, Flanagan SE et al (2006) HLA genotyping supports a nonautoimmune etiology in patients diagnosed with diabetes under the age of 6 months. Diabetes 55(6):1895–1898. https://doi.org/10.2337/DB06-0094
Article CAS PubMed Google Scholar
Senarathne UD, De Franco E, Abdelmeguid Y, Lu ZX, Brown J (2020) Permanent neonatal diabetes mellitus. In: Rezaei N (ed) Genetic syndromes: a comprehensive reference guide. Springer International Publishing, Cham, Switzerland, pp 1–7
Allen HL, Flanagan SE, Shaw-Smith C et al (2011) GATA6 haploinsufficiency causes pancreatic agenesis in humans. Nat Genet 44(1):20–22. https://doi.org/10.1038/ng.1035
Article CAS PubMed PubMed Central Google Scholar
Powell BR, Buist NRM, Stenzel P (1982) An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy. J Pediatr 100(5):731–737. https://doi.org/10.1016/S0022-3476(82)80573-8
Article CAS PubMed Google Scholar
Greeley SAW, Polak M, Njølstad PR et al (2022) ISPAD Clinical Practice Consensus Guidelines 2022: The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes 23(8):1188–1211. https://doi.org/10.1111/PEDI.13426
Barbetti F, Deeb A, Suzuki S (2024) Neonatal diabetes mellitus around the world: update 2024. J Diabetes Investig 15(12). https://doi.org/10.1111/JDI.14312
De Franco E, Flanagan SE, Houghton JAL et al (2015) The effect of early, comprehensive genomic testing on clinical care in neonatal diabetes: an international cohort study. Lancet 386(9997):957–963. https://doi.org/10.1016/S0140-6736(15)60098-8
Article PubMed PubMed Central Google Scholar
Zung A, Glaser B, Nimri R, Zadik Z (2004) Glibenclamide treatment in permanent neonatal diabetes mellitus due to an activating mutation in Kir6.2. J Clin Endocrinol Metab 89(11):5504–5507. https://doi.org/10.1210/JC.2004-1241
Article CAS PubMed Google Scholar
Sagen JV, Ræder H, Hathout E et al (2004) Permanent neonatal diabetes due to mutations in KCNJ11 encoding Kir6.2: patient characteristics and initial response to sulfonylurea therapy. Diabetes 53(10):2713–2718. https://doi.org/10.2337/DIABETES.53.10.2713
Article CAS PubMed Google Scholar
Bowman P, Sulen Å, Barbetti F et al (2018) Effectiveness and safety of long-term treatment with sulfonylureas in patients with neonatal diabetes due to KCNJ11 mutations: an international cohort study. Lancet Diabetes Endocrinol 6(8):637–646. https://doi.org/10.1016/S2213-8587(18)30106-2
Article CAS PubMed PubMed Central Google Scholar
Pezzotta F, Sarale N, Spacco G et al (2024) Safety and efficacy of using advanced hybrid closed loop off-label in an infant diagnosed with permanent neonatal diabetes mellitus: a case report and a look to the future. Children (Basel) 11(10). https://doi.org/10.3390/CHILDREN11101225
Mlynarski W, Tarasov AI, Gach A et al (2007) Sulfonylurea improves CNS function in a case of intermediate DEND syndrome caused by a mutation in KCNJ11. Nat Clin Pract Neurol 3(11):640–645. https://doi.org/10.1038/NCPNEURO0640
Article CAS PubMed Google Scholar
Campos Franco P, Santos de Santana L, Dantas Costa-Riquetto A, Santomauro Junior AC, Jorge AAL, Gurgel Teles M (2022) Clinical and genetic characterization and long-term evaluation of individuals with maturity-onset diabetes of the young (MODY): the journey towards appropriate treatment. Diabetes Res Clin Pract 187:109875. https://doi.org/10.1016/J.DIABRES.2022.109875
Article CAS PubMed Google Scholar
Sharp L, Mirshahi L, Colclough K et al (2023) MODY in older onset diabetes is common and identification can improve treatment: analysis of >72,000 people. Diabetologia 66:S96–S97
Mcdonald TJ, Colclough K, Brown R et al (2011) Islet autoantibodies can discriminate maturity-onset diabetes of the young (MODY) from Type 1 diabetes. Diabetic Medicine 28(9):1028–1033. https://doi.org/10.1111/J.1464-5491.2011.03287.X
Article CAS PubMed Google Scholar
Colclough K, Patel K (2022) How do I diagnose maturity onset diabetes of the young in my patients? Clin Endocrinol (Oxf) 97(4):436–447. https://doi.org/10.1111/CEN.14744
Shields BM, Carlsson A, Patel K et al (2024) Development of a clinical calculator to aid the identification of MODY in pediatric patients at the time of diabetes diagnosis. Sci Rep 14(1):1–9. https://doi.org/10.1038/s41598-024-60160-0
Shields BM, McDonald TJ, Ellard S, Campbell MJ, Hyde C, Hattersley AT (2012) The development and validation of a clinical prediction model to determine the probability of MODY in patients with young-onset diabetes. Diabetologia 55(5):1265–1272. https://doi.org/10.1007/S00125-011-2418-8/TABLES/2
Article CAS PubMed PubMed Central Google Scholar
Zhang H, Colclough K, Gloyn AL, Pollin TI (2021) Monogenic diabetes: a gateway to precision medicine in diabetes. J Clin Invest 131(3). https://doi.org/10.1172/JCI142244
Delvecchio M, Pastore C, Giordano P (2020) Treatment options for MODY patients: a systematic review of literature. Diabetes Therapy 11(8):1667–1685. https://doi.org/10.1007/S13300-020-00864-4/TABLES/4
Article PubMed PubMed Central Google Scholar
Shepherd MH, Shields BM, Hudson M et al (2018) A UK nationwide prospective study of treatment change in MODY: genetic subtype and clinical characteristics predict optimal glycaemic control after discontinuing insulin and metformin. Diabetologia 61(12):2520–2527. https://doi.org/10.1007/S00125-018-4728-6/FIGURES/2
Article PubMed PubMed Central Google Scholar
Steele AM, Shields BM, Wensley KJ, Colclough K, Ellard S, Hattersley AT (2014) Prevalence of vascular complications among patients with glucokinase mutations and prolonged, mild hyperglycemia. JAMA 311(3):279–286. https://doi.org/10.1001/JAMA.2013.283980
Article CAS PubMed Google Scholar
Mateus JC, Rivera C, O’Meara M, Valenzuela A, Lizcano F (2020) Maturity-onset diabetes of the young type 5 a MULTISYSTEMIC disease: a CASE report of a novel mutation in the HNF1B gene and literature review. Clin Diabetes Endocrinol 6(1):1–8. https://doi.org/10.1186/S40842-020-00103-6
Kleinberger JW, Pollin TI (2015) Undiagnosed MODY: time for action. Curr Diab Rep 15(12):1–11. https://doi.org/10.1007/S11892-015-0681-7/TABLES/1
Al-Khawaga S, Mohammed I, Saraswathi S et al (2019) The clinical and genetic characteristics of permanent neonatal diabetes (PNDM) in the state of Qatar. Mol Genet Genomic Med 7(10):e00753. https://doi.org/10.1002/MGG3.753
Article PubMed PubMed Central Google Scholar
Kanakatti Shankar R, Pihoker C, Dolan LM et al (2012) Permanent neonatal diabetes mellitus: prevalence and genetic diagnosis in the SEARCH for diabetes in youth study. Pediatr Diabetes 14(3):174. https://doi.org/10.1111/PEDI.12003
Hassan SS, Musa SA, De Franco E et al (2024) Incidence, phenotypes, and genotypes of neonatal diabetes: a 16-year experience the rare genetic etiologies of neonatal diabetes are common in Sudan. Pediatr Diabetes 2024(1):2032425. https://doi.org/10.1155/2024/2032425
Article PubMed PubMed Central Google Scholar
Ben-Omran T, Al Ghanim K, Yavarna T et al (2019) Effects of consanguinity in a cohort of subjects with certain genetic disorders in Qatar. Mol Genet Genomic Med 8(1):e1051. https://doi.org/10.1002/MGG3.1051
Article PubMed PubMed Central Google Scholar
Rubio-Cabezas O, Patch AM, Minton JAL et al (2009) Wolcott-Rallison syndrome is the most common genetic cause of permanent neonatal diabetes in consanguineous families. J Clin Endocrinol Metab 94(11):4162–4170. https://doi.org/10.1210/JC.2009-1137
Article CAS PubMed PubMed Central Google Scholar
Rapini N, Delvecchio M, Mucciolo M et al (2024) The changing landscape of neonatal diabetes mellitus in Italy between 2003 and 2022. J Clin Endocrinol Metab 109(9):2349–2357. https://doi.org/10.1210/CLINEM/DGAE095
Comments (0)