Ganesan H, Ho KL, Mariatulqabtiah AR, Yong CY, Wong CL, Goh ZH et al (2022) Virus-like particles of Macrobrachium rosenbergii nodavirus: particle size and capsid protein assembly domain. Aquaculture 561:738670
Chakraborty B, Das S, Gupta A, Xiong Y, TV V, Kizer ME et al (2022) Aptamers for viral detection and Inhibition. ACS Infect Dis 8(4):667–692
CAS PubMed PubMed Central Google Scholar
Yu Q, Li M, Liu M, Huang S, Wang G, Wang T et al (2021) Selection and characterization of SsDNA aptamers targeting largemouth bass virus infected cells with antiviral activities. Front Microbiol 12:785318
PubMed PubMed Central Google Scholar
Dzuvor CKO, Tettey EL, Danquah MK (2022) Aptamers as promising nanotheranostic tools in the COVID-19 pandemic era. Wiley Interdiscip Rev Nanomed Nanobiotechnol 14(3):e1785
CAS PubMed PubMed Central Google Scholar
Hu C, Yang S, Li S, Liu X, Liu Y, Chen Z et al (2024) Viral aptamer screening and aptamer-based biosensors for virus detection: A review. Int J Biol Macromol. 133935
Chong C, Low C (2019) Synthetic antibody: prospects in aquaculture biosecurity. Fish Shellfish Immunol. 86
Krüger A, de Jesus Santos AP, de Sá V, Ulrich H, Wrenger C (2021) Aptamer applications in emerging viral diseases. Pharmaceuticals 14(7):622
PubMed PubMed Central Google Scholar
Zhang T, Lu Y, Deng S, Deng R (2021) Aptamers for the diagnosis of infectious diseases. Aptamers Med Appl Diagnosis Ther. 207–238
Chen Z, Sun Q, Yang Y, Nie X, Xiang W, Ren Y et al (2024) Aptamer-based diagnostic and therapeutic approaches for animal viruses: A review. Int J Biol Macromol 257:128677
Ghadin N, Yusof NAM, Syarul Nataqain B, Raston NHA, Low CF (2024) Selection and characterization of SsDNA aptamer targeting Macrobrachium rosenbergii nodavirus capsid protein: A potential capture agent in gold-nanoparticle-based aptasensor for viral protein detection. J Fish Dis 47(2):1–11
Ghadin N, Baharum SN, Ahmad Raston NH, Low C-F (2025) Truncation-Enhanced aptamer binding affinity and its potential as a sensor for Macrobrachium rosenbergii nodavirus detection. J Fish Dis. e14093
Cleri F, Lensink MF, Blossey R (2021) DNA aptamers block the receptor binding domain at the Spike protein of SARS-CoV-2. Front Mol Biosci 8:713003
CAS PubMed PubMed Central Google Scholar
Sun M, Liu S, Wei X, Wan S, Huang M, Song T et al (2021) Aptamer blocking strategy inhibits SARS-CoV-2 virus infection. Angew Chemie Int Ed 60(18):10266–10272
Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B et al (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25
Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718
Huang J, MacKerell AD Jr (2013) CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem 34(25):2135–2145
CAS PubMed PubMed Central Google Scholar
Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29(11):1859–1865
Hess B, Kutzner C, Van Der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447
Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys;126(1)
Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, Moreno E (2021) gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS. J Chem Theory Comput 17(10):6281–6291
Zhang X, Zhang Z, Li J, Huang X, Wei J, Yang J et al (2022) A novel sandwich ELASA based on aptamer for detection of largemouth bass virus (LMBV). Viruses 14(5):1–10
Bosak A, Saraf N, Willenberg A, Kwan MWC, Alto BW, Jackson GW et al (2019) Aptamer-gold nanoparticle conjugates for the colorimetric detection of arboviruses and vector mosquito species. RSC Adv 9(41):23752–23763
CAS PubMed PubMed Central Google Scholar
Nguyen ATV, Duong BT, Park H, Yeo S-J (2022) Development of a peptide aptamer pair-linked rapid fluorescent diagnostic system for Zika virus detection. Biosens Bioelectron 197:113768
Park G, Lee M, Kang J, Park C, Min J, Lee T (2022) Selection of DNA aptamer and its application as an electrical biosensor for Zika virus detection in human serum. Nano Converg 9(1):41
CAS PubMed PubMed Central Google Scholar
Thevendran R, Rogini S, Leighton G, Mutombwera A, Shigdar S, Tang T-H et al (2023) The diagnostic potential of RNA aptamers against the NS1 protein of dengue virus serotype 2. Biology (Basel) 12(5):722
CAS PubMed PubMed Central Google Scholar
Schlicksup CJ, Wang JC-Y, Francis S, Venkatakrishnan B, Turner WW, VanNieuwenhze M et al (2018) Hepatitis B virus core protein allosteric modulators can distort and disrupt intact capsids. Elife 7:e31473
PubMed PubMed Central Google Scholar
Valiente L, López-Argüello S, Rodr\’\iguez-Huete A, Valbuena A, Mateu MG (2022) Molecular determinants of human rhinovirus infection, assembly, and conformational stability at capsid protein interfaces. J Virol 96(23):e00840–e00822
PubMed PubMed Central Google Scholar
Kant R, Lee L-S, Patterson A, Gibes N, Venkatakrishnan B, Zlotnick A et al (2024) Small molecule assembly agonist alters the dynamics of hepatitis B virus core protein dimer and capsid. J Am Chem Soc 146(42):28856–28865
Zhou L, Li P, Yang M, Yu Y, Huang Y, Wei J et al (2016) Generation and characterization of novel DNA aptamers against coat protein of grouper nervous necrosis virus (GNNV) with antiviral activities and delivery potential in grouper cells. Antiviral Res 129:104–114
Sun M, Liu S, Song T, Chen F, Zhang J, Huang J et al (2021) Spherical neutralizing aptamer inhibits SARS-CoV-2 infection and suppresses mutational escape. J Am Chem Soc 143(51):21541–21548
Torres-Vázquez B, de Lucas AM, Garc\’\ia-Crespo C, Garc\’\ia-Mart\’\in JA, Fragoso A, Fernández-Algar M et al (2022) In vitro selection of high affinity DNA and RNA aptamers that detect hepatitis C virus core protein of genotypes 1 to 4 and inhibit virus production in cell culture. J Mol Biol 167501
Bowman GR (2016) Accurately modeling nanosecond protein dynamics requires at least microseconds of simulation. J Comput Chem 37(6):558–566
Selvaraj C, Panwar U, Dinesh DC, Boura E, Singh P, Dubey VK et al (2021) Microsecond MD simulation and multiple-conformation virtual screening to identify potential anti-COVID-19 inhibitors against SARS-CoV-2 main protease. Front Chem 8:595273
PubMed PubMed Central Google Scholar
Kumar P, Bhardwaj T, Kumar A, Garg N, Giri R (2022) One microsecond MD simulations of the SARS-CoV-2 main protease and hydroxychloroquine complex reveal the intricate nature of binding. J Biomol Struct Dyn 40(21):10763–10770
Gruenke PR, Aneja R, Welbourn S, Ukah OB, Sarafianos SG, Burke DH et al (2022) Selection and identification of an RNA aptamer that specifically binds the HIV-1 capsid lattice and inhibits viral replication. Nucleic Acids Res 50(3):1701–1717
Comments (0)