Molecular dynamics simulations reveal mechanistic insights into aptamer-induced structural rearrangements in viral capsid proteins

Ganesan H, Ho KL, Mariatulqabtiah AR, Yong CY, Wong CL, Goh ZH et al (2022) Virus-like particles of Macrobrachium rosenbergii nodavirus: particle size and capsid protein assembly domain. Aquaculture 561:738670

CAS  Google Scholar 

Chakraborty B, Das S, Gupta A, Xiong Y, TV V, Kizer ME et al (2022) Aptamers for viral detection and Inhibition. ACS Infect Dis 8(4):667–692

CAS  PubMed  PubMed Central  Google Scholar 

Yu Q, Li M, Liu M, Huang S, Wang G, Wang T et al (2021) Selection and characterization of SsDNA aptamers targeting largemouth bass virus infected cells with antiviral activities. Front Microbiol 12:785318

PubMed  PubMed Central  Google Scholar 

Dzuvor CKO, Tettey EL, Danquah MK (2022) Aptamers as promising nanotheranostic tools in the COVID-19 pandemic era. Wiley Interdiscip Rev Nanomed Nanobiotechnol 14(3):e1785

CAS  PubMed  PubMed Central  Google Scholar 

Hu C, Yang S, Li S, Liu X, Liu Y, Chen Z et al (2024) Viral aptamer screening and aptamer-based biosensors for virus detection: A review. Int J Biol Macromol. 133935

Chong C, Low C (2019) Synthetic antibody: prospects in aquaculture biosecurity. Fish Shellfish Immunol. 86

Krüger A, de Jesus Santos AP, de Sá V, Ulrich H, Wrenger C (2021) Aptamer applications in emerging viral diseases. Pharmaceuticals 14(7):622

PubMed  PubMed Central  Google Scholar 

Zhang T, Lu Y, Deng S, Deng R (2021) Aptamers for the diagnosis of infectious diseases. Aptamers Med Appl Diagnosis Ther. 207–238

Chen Z, Sun Q, Yang Y, Nie X, Xiang W, Ren Y et al (2024) Aptamer-based diagnostic and therapeutic approaches for animal viruses: A review. Int J Biol Macromol 257:128677

CAS  PubMed  Google Scholar 

Ghadin N, Yusof NAM, Syarul Nataqain B, Raston NHA, Low CF (2024) Selection and characterization of SsDNA aptamer targeting Macrobrachium rosenbergii nodavirus capsid protein: A potential capture agent in gold-nanoparticle-based aptasensor for viral protein detection. J Fish Dis 47(2):1–11

Google Scholar 

Ghadin N, Baharum SN, Ahmad Raston NH, Low C-F (2025) Truncation-Enhanced aptamer binding affinity and its potential as a sensor for Macrobrachium rosenbergii nodavirus detection. J Fish Dis. e14093

Cleri F, Lensink MF, Blossey R (2021) DNA aptamers block the receptor binding domain at the Spike protein of SARS-CoV-2. Front Mol Biosci 8:713003

CAS  PubMed  PubMed Central  Google Scholar 

Sun M, Liu S, Wei X, Wan S, Huang M, Song T et al (2021) Aptamer blocking strategy inhibits SARS-CoV-2 virus infection. Angew Chemie Int Ed 60(18):10266–10272

CAS  Google Scholar 

Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B et al (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25

Google Scholar 

Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718

PubMed  Google Scholar 

Huang J, MacKerell AD Jr (2013) CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem 34(25):2135–2145

CAS  PubMed  PubMed Central  Google Scholar 

Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29(11):1859–1865

CAS  PubMed  Google Scholar 

Hess B, Kutzner C, Van Der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447

CAS  PubMed  Google Scholar 

Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys;126(1)

Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, Moreno E (2021) gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS. J Chem Theory Comput 17(10):6281–6291

PubMed  Google Scholar 

Zhang X, Zhang Z, Li J, Huang X, Wei J, Yang J et al (2022) A novel sandwich ELASA based on aptamer for detection of largemouth bass virus (LMBV). Viruses 14(5):1–10

Google Scholar 

Bosak A, Saraf N, Willenberg A, Kwan MWC, Alto BW, Jackson GW et al (2019) Aptamer-gold nanoparticle conjugates for the colorimetric detection of arboviruses and vector mosquito species. RSC Adv 9(41):23752–23763

CAS  PubMed  PubMed Central  Google Scholar 

Nguyen ATV, Duong BT, Park H, Yeo S-J (2022) Development of a peptide aptamer pair-linked rapid fluorescent diagnostic system for Zika virus detection. Biosens Bioelectron 197:113768

CAS  PubMed  Google Scholar 

Park G, Lee M, Kang J, Park C, Min J, Lee T (2022) Selection of DNA aptamer and its application as an electrical biosensor for Zika virus detection in human serum. Nano Converg 9(1):41

CAS  PubMed  PubMed Central  Google Scholar 

Thevendran R, Rogini S, Leighton G, Mutombwera A, Shigdar S, Tang T-H et al (2023) The diagnostic potential of RNA aptamers against the NS1 protein of dengue virus serotype 2. Biology (Basel) 12(5):722

CAS  PubMed  PubMed Central  Google Scholar 

Schlicksup CJ, Wang JC-Y, Francis S, Venkatakrishnan B, Turner WW, VanNieuwenhze M et al (2018) Hepatitis B virus core protein allosteric modulators can distort and disrupt intact capsids. Elife 7:e31473

PubMed  PubMed Central  Google Scholar 

Valiente L, López-Argüello S, Rodr\’\iguez-Huete A, Valbuena A, Mateu MG (2022) Molecular determinants of human rhinovirus infection, assembly, and conformational stability at capsid protein interfaces. J Virol 96(23):e00840–e00822

PubMed  PubMed Central  Google Scholar 

Kant R, Lee L-S, Patterson A, Gibes N, Venkatakrishnan B, Zlotnick A et al (2024) Small molecule assembly agonist alters the dynamics of hepatitis B virus core protein dimer and capsid. J Am Chem Soc 146(42):28856–28865

CAS  PubMed  Google Scholar 

Zhou L, Li P, Yang M, Yu Y, Huang Y, Wei J et al (2016) Generation and characterization of novel DNA aptamers against coat protein of grouper nervous necrosis virus (GNNV) with antiviral activities and delivery potential in grouper cells. Antiviral Res 129:104–114

CAS  PubMed  Google Scholar 

Sun M, Liu S, Song T, Chen F, Zhang J, Huang J et al (2021) Spherical neutralizing aptamer inhibits SARS-CoV-2 infection and suppresses mutational escape. J Am Chem Soc 143(51):21541–21548

CAS  PubMed  Google Scholar 

Torres-Vázquez B, de Lucas AM, Garc\’\ia-Crespo C, Garc\’\ia-Mart\’\in JA, Fragoso A, Fernández-Algar M et al (2022) In vitro selection of high affinity DNA and RNA aptamers that detect hepatitis C virus core protein of genotypes 1 to 4 and inhibit virus production in cell culture. J Mol Biol 167501

Bowman GR (2016) Accurately modeling nanosecond protein dynamics requires at least microseconds of simulation. J Comput Chem 37(6):558–566

CAS  PubMed  Google Scholar 

Selvaraj C, Panwar U, Dinesh DC, Boura E, Singh P, Dubey VK et al (2021) Microsecond MD simulation and multiple-conformation virtual screening to identify potential anti-COVID-19 inhibitors against SARS-CoV-2 main protease. Front Chem 8:595273

PubMed  PubMed Central  Google Scholar 

Kumar P, Bhardwaj T, Kumar A, Garg N, Giri R (2022) One microsecond MD simulations of the SARS-CoV-2 main protease and hydroxychloroquine complex reveal the intricate nature of binding. J Biomol Struct Dyn 40(21):10763–10770

CAS  PubMed  Google Scholar 

Gruenke PR, Aneja R, Welbourn S, Ukah OB, Sarafianos SG, Burke DH et al (2022) Selection and identification of an RNA aptamer that specifically binds the HIV-1 capsid lattice and inhibits viral replication. Nucleic Acids Res 50(3):1701–1717

CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif