3CL of SARS-CoV-2 as a new target for bufadienolides: in silico and in vitro study

Zhu N, Zhang D, Wang W, Li X, Yang B, Song J et al (2020) A novel coronavirus from patients with pneumonia in china, 2019. N Engl J Med 382:727–733. https://doi.org/10.1056/NEJMoa2001017

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beyerstedt S, Casaro EB, Rangel É (2021) B. COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. European journal of clinical microbiology & infectious diseases: official publication of the European society of clinical microbiology. 40, 905–919 https://doi.org/10.1007/s10096-020-04138-6

Sharifkashani S, Bafrani MA, Khaboushan AS, Pirzadeh M, Kheirandish A, Bali Y (2020) Angiotensin-converting enzyme 2 (ACE2) receptor and SARS-CoV-2: potential therapeutic targeting. Eur J Pharmacol 884:173455. https://doi.org/10.1016/j.ejphar.2020.173455

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chung MK, Karnik S, Saef J, Bergmann C, Barnard J, Lederman MM et al (2020) SARS-CoV-2 and ACE2: the biology and clinical data settling the ARB and ACEI controversy. EBioMedicine 58:102907. https://doi.org/10.1016/j.ebiom.2020.102907

Article  PubMed  PubMed Central  Google Scholar 

Banu N, Panikar SS, Leal LR, Leal AR (2020) Protective role of ACE2 and its downregulation in SARS-CoV-2 infection leading to macrophage activation syndrome: therapeutic implications. Life Sci 256:117905. https://doi.org/10.1016/j.lfs.2020.117905

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hulswit RJG, de Haan CAM, Bosch BJ (2016) Chapter Two - Coronavirus Spike Protein and Tropism Changes. In: Advances in Virus Research, Ziebuhr, J. Ed., Academic Press, Vol. 96, pp. 29–57

Sanyaolu A, Okorie C, Marinkovic A, Haider N, Abbasi AF, Jaferi U et al (2021) The emerging SARS-CoV-2 variants of concern. Therapeutic Adv Infect Disease 8:20499361211024372. https://doi.org/10.1177/20499361211024372

Article  CAS  Google Scholar 

Badavath VN, Kumar A, Samanta PK, Maji S, Das A, Blum G et al (2022) Determination of potential inhibitors based on Isatin derivatives against SARS-CoV-2 main protease (m(pro)): a molecular docking, molecular dynamics and structure-activity relationship studies. J Biomol Struct Dyn 40:3110–3128. https://doi.org/10.1080/07391102.2020.1845800

Article  CAS  PubMed  Google Scholar 

Anirudhan V, Lee H, Cheng H, Cooper L, Rong L, Targeting (2021) SARS-CoV-2 viral proteases as a therapeutic strategy to treat COVID-19. J Med Virol 93:2722–2734. https://doi.org/10.1002/jmv.26814

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang F, Chen C, Tan W, Yang K, Yang H (2016) Structure of main protease from human coronavirus NL63: insights for wide spectrum Anti-Coronavirus drug design. Sci Rep 6:22677. https://doi.org/10.1038/srep22677

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiong M, Su H, Zhao W, Xie H, Shao Q, Xu Y (2021) What coronavirus 3 C-like protease tells us: from structure, substrate selectivity, to inhibitor design. Med Res Rev 41:1965–1998. https://doi.org/10.1002/med.21783

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pillaiyar T, Manickam M, Namasivayam V, Hayashi Y, Jung SH (2016) An overview of severe acute respiratory Syndrome-Coronavirus (SARS-CoV) 3CL protease inhibitors: peptidomimetics and small molecule chemotherapy. J Med Chem 59:6595–6628. https://doi.org/10.1021/acs.jmedchem.5b01461

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dai W, Zhang B, Jiang XM, Su H, Li J, Zhao Y et al (2020) Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Sci (New York N Y) 368:1331–1335. https://doi.org/10.1126/science.abb4489

Article  CAS  Google Scholar 

Tian HY, Ruan LJ, Yu T, Zheng QF, Chen NH, Wu RB et al (2017) Bufospirostenin A and Bufogargarizin C, steroids with rearranged skeletons from the Toad Bufo bufo gargarizans. J Nat Prod 80:1182–1186. https://doi.org/10.1021/acs.jnatprod.6b01018

Article  CAS  PubMed  Google Scholar 

Asrorov AM, Kayumov M, Mukhamedov N, Yashinov A, Mirakhmetova Z, Huang Y et al (2023) Toad venom bufadienolides and bufotoxins: an updated review. Drug Dev Res 84:815–838. https://doi.org/10.1002/ddr.22072

Article  CAS  PubMed  Google Scholar 

El-Seedi HR, Yosri N, El-Aarag B, Mahmoud SH, Zayed A, Du M et al (2022) Chemistry and the potential antiviral, anticancer, and Anti-Inflammatory activities of cardiotonic steroids derived from toads. Molecules 27. https://doi.org/10.3390/molecules27196586

Zou D, Wang Q, Chen T, Sang D, Yang T, Wang Y et al (2022) Bufadienolides originated from Toad source and their anti-inflammatory activity. Front Pharmacol 13:1044027. https://doi.org/10.3389/fphar.2022.1044027

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jin YH, Jeon S, Lee J, Kim S, Jang MS, Park CM et al (2021) Broad spectrum antiviral properties of cardiotonic steroids used as potential therapeutics for emerging coronavirus infections. Pharmaceutics 13. https://doi.org/10.3390/pharmaceutics13111839

Soliev AB, Mirzaakhmedov SY, Tashmukhamedov MS, Kamaev FG, Salikhov SI, Zakirova NI et al (2007) Chemical composition and biological activity of total bufadienolides from the Central-Asian Bufo viridis Toad venom. Pharm Chem J 41:600–604. https://doi.org/10.1007/s11094-008-0024-y

Article  CAS  Google Scholar 

Kayumov M, Mukhamedov N, Ashurov J, Eshimbetov A, Asrorov AM, Yashinov A et al (2025) A new polymorphic form of 3b,11a,14-trihydroxy-5b,14b-bufa-20,22-dienolide (telocinobufagin) and its p300 and NNMT inhibitory activity. J Mol Struct 141503. https://doi.org/10.1016/j.molstruc.2025.141503

Liu Y, Yang X, Gan J, Chen S, Xiao Z-X, Cao Y (2022) CB-Dock2: improved protein–ligand blind Docking by integrating cavity detection, Docking and homologous template fitting. Nucleic Acids Res 50(W159–W64). https://doi.org/10.1093/nar/gkac394. %J Nucleic Acids Research

Yang X, Liu Y, Gan J, Xiao Z-X, Cao Y (2022) FitDock: protein–ligand Docking by template fitting. Brief Bioinform 23. https://doi.org/10.1093/bib/bbac087

Devasia J, Sampath C, Kavita K, Sonam S, Francis J, Mithun R et al (2023) Synthesis, DFT and in Silico Anti-COVID evaluation of novel tetrazole analogues. Polycycl Aromat Compd 43:1941–1956. https://doi.org/10.1080/10406638.2022.2036778

Article  CAS  Google Scholar 

Kneller DW, Phillips G, Weiss KL, Pant S, Zhang Q, O’Neill HM et al (2020) Unusual zwitterionic catalytic site of SARS-CoV-2 main protease revealed by neutron crystallography. J Biol Chem 295:17365–17373. https://doi.org/10.1074/jbc.AC120.016154

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fernandes HS, Sousa SF, Cerqueira NVMD, Store-A (2019) VMD plugin to browse, discover, and install VMD extensions. J Chem Inf Model 59:4519–4523. https://doi.org/10.1021/acs.jcim.9b00739

Article  CAS  PubMed  Google Scholar 

MacKerell AD Jr., Banavali N, Foloppe N (2000) Development and current status of the CHARMM force field for nucleic acids. Biopolymers 56:257–265. https://doi.org/10.1002/1097-0282(2000)56:4%3C;257:aid-bip10029%3E;3.0.co;2-w

Article  CAS  PubMed  Google Scholar 

Zoete V, Cuendet MA, Grosdidier A, Michielin O (2011) SwissParam: a fast force field generation tool for small organic molecules. J Comput Chem 32:2359–2368. https://doi.org/10.1002/jcc.21816

Article  CAS  PubMed  Google Scholar 

Mark P, Nilsson L (2001) Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J Phys Chem A 105:9954–9960. https://doi.org/10.1021/jp003020w

Article  CAS  Google Scholar 

Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101. https://doi.org/10.1063/1.2408420

Article  CAS  PubMed  Google Scholar 

Parrinello M, Rahman AJ (1981) J.o.A.p. Polymorphic transitions in single crystals: A new molecular dynamics method. 52, 7182–7190

Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA (1992) The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem 13:1011–1021

Article  CAS  Google Scholar 

Hub JS, de Groot BL (2006) Does CO2 permeate through aquaporin-1? Biophys J 91:842–848. https://doi.org/10.1529/biophysj.106.081406

Article  CAS  PubMed  PubMed Central  Google Scholar 

Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717. https://doi.org/10.1038/srep42717

Article  PubMed  PubMed Central  Google Scholar 

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settin

Comments (0)

No login
gif