Protein-ligand co-design: a case for improving binding affinity between type II NADH:quinone oxidoreductase and quinones

Yajie Wang P, Xue MC, Tianhao Y, Lane S T, Zhao H (2021) Directed evolution: methodologies and applications. Chem Rev 121(20):12384–12444

Article  PubMed  Google Scholar 

Hellinga HW (1997) Rational protein design: combining theory and experiment. Proc Natl Acad Sci 94(19):10015–10017

Article  CAS  PubMed  PubMed Central  Google Scholar 

Korendovych Ivan V, Bornscheuer Uwe T, Matthias Höhne (2018) Rational and semirational protein design. Springer, New York, pp 15–23

Google Scholar 

de Abreu AP, Carvalho FC, Mariano D, Bastos LL, Silva JR, de Oliveira LM, de Melo-Minardi RC, Sabino AD (2024) An approach for engineering peptides for competitive inhibition of the sars-cov-2 spike protein. Molecules 29(7):1577

Article  PubMed  PubMed Central  Google Scholar 

Scott LPB, Chahine J, Ruggiero JR (2008) Using genetic algorithm to design protein sequence. Appl Math Comput 200(1):1–9

Google Scholar 

Shao Q, Jiang Y, Yang ZJ (2023) EnzyHTP computational directed evolution with adaptive resource allocation. J Chem Inform Model 63(17):5650–5659

Article  CAS  Google Scholar 

Yang KK, Zachary WU, Arnold FH (2019) Machine-learning-guided directed evolution for protein engineering. Nat Methods 16(8):687–694

Article  CAS  PubMed  Google Scholar 

Belanger D, Vora S, Mariet Z, Deshpande R, Dohan D, Angermueller C, Murphy K, Chapelle O, Colwell L (2019) Biological sequences design using batched bayesian optimization. NeurIPS Workshop Bayesian Deep Learn 1:4

Google Scholar 

Linder J, Seelig G (2021) Fast activation maximization for molecular sequence design. BMC Bioinform 22(1):1–20

Article  Google Scholar 

Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, Ronneberger O, Willmore L, Ballard AJ, Bambrick J, Bodenstein SW, Evans DA, Hung CC, O’Neill M, Reiman D, Tunyasuvunakool K, Zachary W, Žemgulytė A, Arvaniti E, Beattie C, Bertolli O, Bridgland A, Cherepanov A, Congreve M, Cowen-Rivers AI, Cowie A, Figurnov M, Fuchs FB, Gladman H, Jain R, Khan YA, Low CMR, Perlin K, Potapenko A, Savy P, Singh S, Stecula A, Thillaisundaram A, Tong C, Yakneen S, Zhong ED, Zielinski M, Žídek A, Bapst V, Kohli P, Jaderberg M, Hassabis D, Jumper JM (2024) Accurate structure prediction of biomolecular interactions with alphafold 3. Nature 630(8016):493–500

Article  CAS  PubMed  PubMed Central  Google Scholar 

Discovery, C., Boitreaud, J., Dent, J., McPartlon, M., Meier, J., Reis, V., Rogozhnikov, A., Wu, K (2024) Decoding the molecular interactions of life. bioRxiv. https://doi.org/10.1101/2024.10.10.615955

Jeremy Wohlwend, Gabriele Corso, Saro Passaro, Noah Getz, Mateo Reveiz, Ken Leidal, Wojtek Swiderski, Liam Atkinson, Tally Portnoi, Itamar C, Jacob S, Tommi J, Regina B (2025) Boltz-1 democratizing biomolecular interaction modeling. bioRxiv. https://doi.org/10.1101/2024.11.19.624167

Article  Google Scholar 

Shu-Feng Z, Wei-Zhu Z (2017) Drug design and discovery: principles and applications. Molecules 22(2):279

Article  Google Scholar 

Gao W, Coley CW (2020) The synthesizability of molecules proposed by generative models. J Chem Inform Model 60(12):5714–5723

Article  CAS  Google Scholar 

Tang Y, Moretti R, Meiler J (2024) Recent advances in automated structure-based de novo drug design. J Chem Inform Model 64(6):1794–1805

Article  CAS  Google Scholar 

Jiménez-Luna J, Grisoni F, Schneider G (2020) Drug discovery with explainable artificial intelligence. Nat Mach Intell 2(10):573–584

Article  Google Scholar 

Shanbhag MM, Manasa G, Mascarenhas RJ, Mondal K, Shetti NP (2023) Fundamentals of bio-electrochemical sensing. Chem Eng J Adv 16:100516

Article  CAS  Google Scholar 

Bowie JU, Sherkhanov S, Korman TP, Valliere MA, Opgenorth PH, Liu H (2020) Synthetic biochemistry: The bio-inspired cell-free approach to commodity chemical production. Trends Biotechnol 38(7):766–778

Article  CAS  PubMed  Google Scholar 

Blaza JN, Bridges HR, Aragão D, Dunn EA, Heikal A, Cook GM, Nakatani Y, Hirst J (2017) The mechanism of catalysis by type-II NADH:quinone oxidoreductases. Sci Rep 7(1):40165

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marreiros BC, Sena FV, Sousa FM, Batista AP, Pereira MM (2016) Type II NADH:quinone oxidoreductase family: phylogenetic distribution, structural diversity and evolutionary divergences. Environ Microbiol 18(12):4697–4709

Article  CAS  PubMed  Google Scholar 

Seo BBoo, Kitajima-Ihara T, Chan EKL, Scheffler IE, Matsuno-Yagi A, Yagi T (1998) Molecular remedy of complex I defects: rotenone-insensitive internal NADH-quinone oxidoreductase of Saccharomyces cerevisiae mitochondria restores the NADH oxidase activity of complex I-deficient mammalian cells. Proc Natl Acad Sci 95(16):9167–9171

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peltier G, Aro EM, Shikanai T (2016) NDH-1 and NDH-2 plastoquinone reductases in oxygenic photosynthesis. Ann Rev Plant Biol 67(1):55–80

Article  CAS  Google Scholar 

May SW (1999) Applications of oxidoreductases. Curr Opin Biotechnol 10(4):370–375

Article  CAS  PubMed  Google Scholar 

Stevens ET, Beeck WV, Blackburn B, Tejedor-Sanz S, Rasmussen ARM, Mevers Emily, Ajo-Franklin Caroline M, Marco Maria L (2023) Lactiplantibacillus plantarum uses ecologically relevant, exogenous quinones for extracellular electron transfer. bioRxiv 14(6):e02234-23

Google Scholar 

Siliang L, de Caroline GT, Tolar JG, Caroline MAF (2023) Selective bioelectronic sensing of quinone pharmaceuticals using extracellular electron transfer in Lactiplantibacillus plantarum. Rxiv. https://doi.org/10.1016/j.bios.2023.115762

Article  Google Scholar 

. Blackburn BT, Alba Robyn AC, Porokhin VO, Hatch A, Hassoun S, Ajo-Franklin CM, Mevers E. Identifying key properties that drive redox mediator activity in Lactiplantibacillus plantarum. ChemRxiv, Manuscript submitted for publication

Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

Article  CAS  PubMed  PubMed Central  Google Scholar 

Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson Arthur J (2016) Computational protein-ligand docking and virtual drug screening with the autodock suite. Nat Protoc 11(5):905–919

Article  CAS  PubMed  PubMed Central  Google Scholar 

Santos LHS, Ferreira RS, Caffarena ER (2019) Integrating molecular docking and molecular dynamics simulations. Springer, New York, pp 13–34

Google Scholar 

Schrödinger LLC. Schrödinger: Maestro. Release 2023-2, February 2023

Jacobson MP, Pincus DL, Rapp CS, Day TJF, Honig B, Shaw DE, Friesner RA (2004) A hierarchical approach to all-atom protein loop prediction. Proteins Struct Funct Bioinform 55(2):351–367

Article  CAS  Google Scholar 

Jacobson MP, Friesner RA, Xiang Z, Honig B (2002) On the role of the crystal environment in determining protein side-chain conformations. J Mol Biol 320(3):597–608

Article  CAS  PubMed  Google Scholar 

The UniProt Consortium (2020) UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 49(D1):D480–D489

Article  Google Scholar 

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):583–589

Article  CAS  PubMed  PubMed Central  Google Scholar 

Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A, Žídek A, Green T, Tunyasuvunakool K, Petersen S, Jumper J, Clancy E, Green R, Vora A, Lutfi M, Figurnov M, Cowie A, Hobbs N, Kohli P, Kleywegt G, Birney E, Hassabis D, Velankar S (2021) AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 50(D1):D439–D444

Article  PubMed Central  Google Scholar 

Kim DE, Chivian D, Baker D (2004) Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 32(suppl2):W526–W531

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, Wang J, Cong Q, Kinch LN, Dustin Schaeffer R, Millán C, Park H, Adams C, Glassman CR, D

Comments (0)

No login
gif