Yajie Wang P, Xue MC, Tianhao Y, Lane S T, Zhao H (2021) Directed evolution: methodologies and applications. Chem Rev 121(20):12384–12444
Hellinga HW (1997) Rational protein design: combining theory and experiment. Proc Natl Acad Sci 94(19):10015–10017
Article CAS PubMed PubMed Central Google Scholar
Korendovych Ivan V, Bornscheuer Uwe T, Matthias Höhne (2018) Rational and semirational protein design. Springer, New York, pp 15–23
de Abreu AP, Carvalho FC, Mariano D, Bastos LL, Silva JR, de Oliveira LM, de Melo-Minardi RC, Sabino AD (2024) An approach for engineering peptides for competitive inhibition of the sars-cov-2 spike protein. Molecules 29(7):1577
Article PubMed PubMed Central Google Scholar
Scott LPB, Chahine J, Ruggiero JR (2008) Using genetic algorithm to design protein sequence. Appl Math Comput 200(1):1–9
Shao Q, Jiang Y, Yang ZJ (2023) EnzyHTP computational directed evolution with adaptive resource allocation. J Chem Inform Model 63(17):5650–5659
Yang KK, Zachary WU, Arnold FH (2019) Machine-learning-guided directed evolution for protein engineering. Nat Methods 16(8):687–694
Article CAS PubMed Google Scholar
Belanger D, Vora S, Mariet Z, Deshpande R, Dohan D, Angermueller C, Murphy K, Chapelle O, Colwell L (2019) Biological sequences design using batched bayesian optimization. NeurIPS Workshop Bayesian Deep Learn 1:4
Linder J, Seelig G (2021) Fast activation maximization for molecular sequence design. BMC Bioinform 22(1):1–20
Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, Ronneberger O, Willmore L, Ballard AJ, Bambrick J, Bodenstein SW, Evans DA, Hung CC, O’Neill M, Reiman D, Tunyasuvunakool K, Zachary W, Žemgulytė A, Arvaniti E, Beattie C, Bertolli O, Bridgland A, Cherepanov A, Congreve M, Cowen-Rivers AI, Cowie A, Figurnov M, Fuchs FB, Gladman H, Jain R, Khan YA, Low CMR, Perlin K, Potapenko A, Savy P, Singh S, Stecula A, Thillaisundaram A, Tong C, Yakneen S, Zhong ED, Zielinski M, Žídek A, Bapst V, Kohli P, Jaderberg M, Hassabis D, Jumper JM (2024) Accurate structure prediction of biomolecular interactions with alphafold 3. Nature 630(8016):493–500
Article CAS PubMed PubMed Central Google Scholar
Discovery, C., Boitreaud, J., Dent, J., McPartlon, M., Meier, J., Reis, V., Rogozhnikov, A., Wu, K (2024) Decoding the molecular interactions of life. bioRxiv. https://doi.org/10.1101/2024.10.10.615955
Jeremy Wohlwend, Gabriele Corso, Saro Passaro, Noah Getz, Mateo Reveiz, Ken Leidal, Wojtek Swiderski, Liam Atkinson, Tally Portnoi, Itamar C, Jacob S, Tommi J, Regina B (2025) Boltz-1 democratizing biomolecular interaction modeling. bioRxiv. https://doi.org/10.1101/2024.11.19.624167
Shu-Feng Z, Wei-Zhu Z (2017) Drug design and discovery: principles and applications. Molecules 22(2):279
Gao W, Coley CW (2020) The synthesizability of molecules proposed by generative models. J Chem Inform Model 60(12):5714–5723
Tang Y, Moretti R, Meiler J (2024) Recent advances in automated structure-based de novo drug design. J Chem Inform Model 64(6):1794–1805
Jiménez-Luna J, Grisoni F, Schneider G (2020) Drug discovery with explainable artificial intelligence. Nat Mach Intell 2(10):573–584
Shanbhag MM, Manasa G, Mascarenhas RJ, Mondal K, Shetti NP (2023) Fundamentals of bio-electrochemical sensing. Chem Eng J Adv 16:100516
Bowie JU, Sherkhanov S, Korman TP, Valliere MA, Opgenorth PH, Liu H (2020) Synthetic biochemistry: The bio-inspired cell-free approach to commodity chemical production. Trends Biotechnol 38(7):766–778
Article CAS PubMed Google Scholar
Blaza JN, Bridges HR, Aragão D, Dunn EA, Heikal A, Cook GM, Nakatani Y, Hirst J (2017) The mechanism of catalysis by type-II NADH:quinone oxidoreductases. Sci Rep 7(1):40165
Article CAS PubMed PubMed Central Google Scholar
Marreiros BC, Sena FV, Sousa FM, Batista AP, Pereira MM (2016) Type II NADH:quinone oxidoreductase family: phylogenetic distribution, structural diversity and evolutionary divergences. Environ Microbiol 18(12):4697–4709
Article CAS PubMed Google Scholar
Seo BBoo, Kitajima-Ihara T, Chan EKL, Scheffler IE, Matsuno-Yagi A, Yagi T (1998) Molecular remedy of complex I defects: rotenone-insensitive internal NADH-quinone oxidoreductase of Saccharomyces cerevisiae mitochondria restores the NADH oxidase activity of complex I-deficient mammalian cells. Proc Natl Acad Sci 95(16):9167–9171
Article CAS PubMed PubMed Central Google Scholar
Peltier G, Aro EM, Shikanai T (2016) NDH-1 and NDH-2 plastoquinone reductases in oxygenic photosynthesis. Ann Rev Plant Biol 67(1):55–80
May SW (1999) Applications of oxidoreductases. Curr Opin Biotechnol 10(4):370–375
Article CAS PubMed Google Scholar
Stevens ET, Beeck WV, Blackburn B, Tejedor-Sanz S, Rasmussen ARM, Mevers Emily, Ajo-Franklin Caroline M, Marco Maria L (2023) Lactiplantibacillus plantarum uses ecologically relevant, exogenous quinones for extracellular electron transfer. bioRxiv 14(6):e02234-23
Siliang L, de Caroline GT, Tolar JG, Caroline MAF (2023) Selective bioelectronic sensing of quinone pharmaceuticals using extracellular electron transfer in Lactiplantibacillus plantarum. Rxiv. https://doi.org/10.1016/j.bios.2023.115762
. Blackburn BT, Alba Robyn AC, Porokhin VO, Hatch A, Hassoun S, Ajo-Franklin CM, Mevers E. Identifying key properties that drive redox mediator activity in Lactiplantibacillus plantarum. ChemRxiv, Manuscript submitted for publication
Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461
Article CAS PubMed PubMed Central Google Scholar
Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson Arthur J (2016) Computational protein-ligand docking and virtual drug screening with the autodock suite. Nat Protoc 11(5):905–919
Article CAS PubMed PubMed Central Google Scholar
Santos LHS, Ferreira RS, Caffarena ER (2019) Integrating molecular docking and molecular dynamics simulations. Springer, New York, pp 13–34
Schrödinger LLC. Schrödinger: Maestro. Release 2023-2, February 2023
Jacobson MP, Pincus DL, Rapp CS, Day TJF, Honig B, Shaw DE, Friesner RA (2004) A hierarchical approach to all-atom protein loop prediction. Proteins Struct Funct Bioinform 55(2):351–367
Jacobson MP, Friesner RA, Xiang Z, Honig B (2002) On the role of the crystal environment in determining protein side-chain conformations. J Mol Biol 320(3):597–608
Article CAS PubMed Google Scholar
The UniProt Consortium (2020) UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 49(D1):D480–D489
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):583–589
Article CAS PubMed PubMed Central Google Scholar
Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A, Žídek A, Green T, Tunyasuvunakool K, Petersen S, Jumper J, Clancy E, Green R, Vora A, Lutfi M, Figurnov M, Cowie A, Hobbs N, Kohli P, Kleywegt G, Birney E, Hassabis D, Velankar S (2021) AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 50(D1):D439–D444
Article PubMed Central Google Scholar
Kim DE, Chivian D, Baker D (2004) Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 32(suppl2):W526–W531
Article CAS PubMed PubMed Central Google Scholar
Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, Wang J, Cong Q, Kinch LN, Dustin Schaeffer R, Millán C, Park H, Adams C, Glassman CR, D
Comments (0)