Nicolini A, Ferrari P, Duffy MJ (2018) Prognostic and predictive biomarkers in breast cancer: past, present and future. Semin Cancer Biol 52:56–73. https://doi.org/10.1016/j.semcancer.2017.08.010
Article CAS PubMed Google Scholar
Liu Y, Ma H, Yao J (2020) ERα, a key target for cancer therapy: A review. Onco Targets Ther 13:2183–2191
CAS PubMed PubMed Central Google Scholar
Purnama, Farabi K, Runadi D, Kuncoro H, Harneti D, Nurlelasari et al (2023) The cytotoxic activity of Dammarane-Type triterpenoids isolated from the stem bark of Aglaia cucullata (Meliaceae). Molecules 28(13):4946
Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 44(1):235–249. https://doi.org/10.1016/S1056-8719(00)00107-6
Article CAS PubMed Google Scholar
Miller RR, Madeira M, Wood HB, Geissler WM, Raab CE, Martin IJ (2020) Integrating the impact of lipophilicity on potency and Pharmacokinetic parameters enables the use of diverse chemical space during small molecule drug optimization. J Med Chem 63(21):12156–12170. https://doi.org/10.1021/acs.jmedchem.9b01813
Article CAS PubMed Google Scholar
Zielonka J, Joseph J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J et al (2017) Mitochondria-targeted triphenylphosphonium-based compounds: syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem Rev 117(15):10043–10120. https://doi.org/10.1021/acs.chemrev.7b00042
Article CAS PubMed PubMed Central Google Scholar
Smith RAJ, Porteous CM, Gane AM, Murphy MP (2003) Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci 100(9):5407–5412. https://doi.org/10.1073/pnas.0931245100
Yang M, Brackenbury W (2013) Membrane potential and cancer progression. Front Physiol 4:185
CAS PubMed PubMed Central Google Scholar
Dang PH, Dao TH, Le VT, Nguyen CM, Ly TT, Nguyen HX et al (2020) Synthesis of alkyl triphenylphosphonium ostruthin derivatives as potential cytotoxic candidates. ChemistrySelect 5:12636–12640
Hoang Dang P, Hoai Tran T, Huu Le T, Thi Nguyen T-H, Binh Vong L, Thanh Thi Nguyen M et al (2024) Design, synthesis, cytotoxic evaluation, and molecular Docking of new alkyl triphenylphosphonium Curcumin derivatives. ChemistrySelect 9(10):e202400176. https://doi.org/10.1002/slct.202400176
Tran TH, Le TH, Nguyen T-HT, Vong LB, Nguyen MTT, Nguyen NT et al (2024) Discovery of alkyl triphenylphosphonium pinostrobin derivatives as potent Anti-Breast Cancer agents. Chem Biodivers 21(7):e202400864. https://doi.org/10.1002/cbdv.202400864
Article CAS PubMed Google Scholar
Tran TH, Le TH, Truong HN, Dang TM, Nguyen MTT, Nguyen NT et al (2024) Synthesis, cytotoxicity, and quantitative Structure–Activity relationship studies of alkyl triphenylphosphonium pinostrobin derivatives. ChemistrySelect 9(34):e202402190. https://doi.org/10.1002/slct.202402190
Le PQ, Nguyen NQ, Nguyen TT (2023) DFT approach towards accurate prediction of 1H/13C NMR chemical shifts for Dipterocarpol oxime. RSC Adv 13(45):31811–31819. https://doi.org/10.1039/D3RA04688E
Article CAS PubMed PubMed Central Google Scholar
Antimonova AN, Uzenkova NV, Petrenko NI, Shakirov MM, Shul’ts EE, Tolstikov GA (2011) Synthetic transformations of higher terpenoids: XXIV. Synthesis of cyanoethyl derivatives of Lupane triterpenoids and their transformation into 1,2,4-oxadiazoles. Russ J Org Chem 47(4):589–601. https://doi.org/10.1134/S1070428011040208
Kaledina AS, Zorina AD, Zarubaev VV, Anokhina VV, Erkhitueva EB, Trifonov RE (2015) Synthesis and properties of 2-cyanoethoxy derivatives of Dammarane triterpenoids. Russ J Org Chem 51(11):1627–1632. https://doi.org/10.1134/S1070428015110184
Zorina AD, Kaledina AS, Motsepuro IA, Anokhina VV, Marchenko SA, Selivanov SI et al (2017) Synthesis and anti-influenza activity of 2-cyanoethoxy and 2-(1H-tetrazol-5-yl)ethoxy derivatives of dammarane-type triterpenoids. Russ J Org Chem 53(11):1710–1716. https://doi.org/10.1134/S1070428017110185
Ghasemi M, Turnbull T, Sebastian S, Kempson I (2021) The MTT assay: utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. Int J Mol Sci 22:12827. https://doi.org/10.3390/ijms222312827
Article CAS PubMed PubMed Central Google Scholar
Mehta DJ (1963) Potency and efficacy of drugs. J New Drugs 3(1):12–14. https://doi.org/10.1002/j.1552-4604.1963.tb00055.x
Article CAS PubMed Google Scholar
Pepermans RA, Prossnitz ER (2022) Assessing estrogenic activity of classical estrogenestrogens ReceptorReceptors-Binding compounds. In: Eyster KM (ed) Estrogen receptors: methods and protocols. Springer US, New York, NY, pp 187–201
Zinovkina LA, Galivondzhyan AK, Prikhodko AS, Galkin II, Zinovkin RA (2020) Mitochondria-targeted triphenylphosphonium-based compounds do not affect Estrogen receptor α. PeerJ 8:e8803. https://doi.org/10.7717/peerj.8803
Article PubMed PubMed Central Google Scholar
Chen JQ, Delannoy M, Cooke C, Yager JD (2004) Mitochondrial localization of ERα and ERβ in human MCF7 cells. Am J Physiology-Endocrinology Metabolism 286(6):E1011–E1022. https://doi.org/10.1152/ajpendo.00508.2003
Chen J-Q, Yager JD, Russo J (2005) Regulation of mitochondrial respiratory chain structure and function by estrogens/estrogen receptors and potential physiological/pathophysiological implications. Biochim Biophys Acta 1746(1):1–17. https://doi.org/10.1016/j.bbamcr.2005.08.001
Article CAS PubMed Google Scholar
Pedram A, Razandi M, Wallace DC, Levin ER (2006) Functional Estrogen receptors in the mitochondria of breast Cancer cells. Mol Biol Cell 17(5):2125–2137. https://doi.org/10.1091/mbc.e05-11-1013
Article CAS PubMed PubMed Central Google Scholar
Li W-M, Li X-B, Sun S-X, Liang J, Wang R-L, Wang S-Q (2013) Agonist and antagonist recognition studies for oestrogen receptor by molecular dynamics simulation. Mol Simul 39:228–233. https://doi.org/10.1080/08927022.2012.717281
Puyang X, Furman C, Zheng GZ, Wu ZJ, Banka D, Aithal K et al (2018) Discovery of selective Estrogen receptor covalent antagonists for the treatment of ERαWT and ERαMUT breast Cancer. Cancer Discov 8(9):1176–1193 10.1158/2159–8290.CD-17-1229%J Cancer Discovery
Schneider M, Pons J-L, Labesse G (2021) Exploring the conformational space of a receptor for drug design: an ERα case study. J Mol Graphics Modell 108:107974. https://doi.org/10.1016/j.jmgm.2021.107974
Tecalco-Cruz AC, Pérez-Alvarado IA, Ramírez-Jarquín JO, Rocha-Zavaleta L (2017) Nucleo-cytoplasmic transport of Estrogen receptor alpha in breast cancer cells. Cell Signal 34:121–132. https://doi.org/10.1016/j.cellsig.2017.03.011
Article CAS PubMed Google Scholar
Abot A, Fontaine C, Raymond-Letron I, Flouriot G, Adlanmerini M, Buscato M et al (2013) The AF-1 activation function of Estrogen receptor α is necessary and sufficient for uterine epithelial cell proliferation in vivo. Endocrinology 154(6):2222–2233. https://doi.org/10.1210/en.2012-2059
Article CAS PubMed Google Scholar
Xiong G, Wu Z, Yi J, Fu L, Yang Z, Hsieh C et al (2021) ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res 49(W1):W5–W14. https://doi.org/10.1093/nar/gkab255
Article CAS PubMed PubMed Central Google Scholar
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25.1. Adv Drug Del Rev 46(1):3–26. https://doi.org/10.1016/S0169-409X(00)00129-0
Bhal SK, Kassam K, Peirson IG, Pearl GM (2007) The rule of five revisited: applying log D in place of log P in drug-likeness filters. Mol Pharm 4(4):556–560. https://doi.org/10.1021/mp0700209
Comments (0)