A computational study of cardiac glycosides from as PI3K inhibitors for targeting HER2 positive breast cancer

Contiero P, Boffi R, Borgini A, Fabiano S, Tittarelli A, Mian M et al (2023) Causes of death in women with breast cancer: a risks and rates study on a population-based cohort. Front Oncol 13:1270877

Article  PubMed  PubMed Central  Google Scholar 

Patel A, Unni N, Peng Y (2020) The changing paradigm for the treatment of HER2-positive breast cancer. Cancers. https://doi.org/10.3390/cancers12082081

Article  PubMed  PubMed Central  Google Scholar 

Yi Z, Rong G, Guan Y, Li J, Chang L, Li H et al (2020) Molecular landscape and efficacy of HER2-targeted therapy in patients with HER2-mutated metastatic breast cancer. NPJ Breast Cancer 6(1):59. https://doi.org/10.1038/s41523-020-00201-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dittrich A, Gautrey H, Browell D, Tyson-Capper A (2014) The HER2 signaling network in breast cancer—like a spider in its web. J Mammary Gland Biol Neoplasia 19(3):253–270. https://doi.org/10.1007/s10911-014-9329-5

Article  CAS  PubMed  Google Scholar 

Lien EC, Dibble CC, Toker A (2017) PI3K signaling in cancer: beyond AKT. Curr Opin Cell Biol 45:62–71. https://doi.org/10.1016/j.ceb.2017.02.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martínez-Sáez O, Chic N, Pascual T, Adamo B, Vidal M, González-Farré B et al (2020) Frequency and spectrum of PIK3CA somatic mutations in breast cancer. Breast Cancer Res 22(1):45. https://doi.org/10.1186/s13058-020-01284-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cerma K, Piacentini F, Moscetti L, Barbolini M, Canino F, Tornincasa A et al (2023) Targeting PI3K/AKT/mTOR pathway in breast cancer: from biology to clinical challenges. Biomedicines 11(1):109

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rathinaswamy MK, Dalwadi U, Fleming KD, Adams C, Stariha JTB, Pardon E et al (2021) Structure of the phosphoinositide 3-kinase (PI3K) p110γ-p101 complex reveals molecular mechanism of GPCR activation. Sci Adv 7(35):eabj4282. https://doi.org/10.1126/sciadv.abj4282

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gavgani F, Arnesen V, Jacobsen R, Krakstad C, Hoivik E, Lewis A (2018) Class I phosphoinositide 3-kinase PIK3CA/p110α and PIK3CB/p110β isoforms in endometrial cancer. Int J Mol Sci 19:3931. https://doi.org/10.3390/ijms19123931

Article  Google Scholar 

Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT (2017) The PI3K pathway in human disease. Cell 170(4):605–635. https://doi.org/10.1016/j.cell.2017.07.029

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rascio F, Spadaccino F, Rocchetti MT, Castellano G, Stallone G, Netti GS et al (2021) The pathogenic role of PI3K/AKT pathway in cancer onset and drug resistance: an updated review. Cancers. https://doi.org/10.3390/cancers13163949

Article  PubMed  PubMed Central  Google Scholar 

Hanan EJ, Braun M-G, Heald RA, MacLeod C, Chan C, Clausen S et al (2022) Discovery of GDC-0077 (Inavolisib), a highly selective inhibitor and degrader of mutant PI3Kα. J Med Chem 65(24):16589–16621. https://doi.org/10.1021/acs.jmedchem.2c01422

Article  CAS  PubMed  Google Scholar 

Soler A, Figueiredo AM, Castel P, Martin L, Monelli E, Angulo-Urarte A et al (2016) Therapeutic benefit of selective inhibition of p110α PI3-Kinase in pancreatic neuroendocrine tumors. Clin Cancer Res 22(23):5805–5817. https://doi.org/10.1158/1078-0432.CCR-15-3051

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sen A, Khan SA, MacNeil IA, Rich BE, Molden JS, Davis LN et al (2023) Therapeutic effect of gedatolisib, a pan-PI3K/mTOR inhibitor, on prostate cancer models with PI3K or PTEN mutational status. J Clin Oncol 41(6):149. https://doi.org/10.1200/JCO.2023.41.6_suppl.149

Article  Google Scholar 

Lee H, Jung KH, Jeong Y, Hong S, Hong S-S (2013) HS-173, a novel phosphatidylinositol 3-kinase (PI3K) inhibitor, has anti-tumor activity through promoting apoptosis and inhibiting angiogenesis. Cancer Lett 328(1):152–159. https://doi.org/10.1016/j.canlet.2012.08.020

Article  CAS  PubMed  Google Scholar 

Wang Y, Shen H, Sun Q, Zhao L, Liu H, Ye L et al (2021) The new PI3K/mTOR inhibitor GNE-477 inhibits the malignant behavior of human glioblastoma cells. Front Pharmacol 12:659511. https://doi.org/10.3389/fphar.2021.659511

Article  CAS  PubMed  PubMed Central  Google Scholar 

du Rusquec P, Blonz C, Frenel JS, Campone M (2020) Targeting the PI3K/Akt/mTOR pathway in estrogen-receptor positive HER2 negative advanced breast cancer. Ther Adv Med Oncol 12:1758835920940939. https://doi.org/10.1177/1758835920940939

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai T, Feng T, Li G, Wang J, Jin S, Ye D et al (2024) Deciphering the prognostic features of bladder cancer through gemcitabine resistance and immune-related gene analysis and identifying potential small molecular drug PIK-75. Cancer Cell Int 24(1):125. https://doi.org/10.1186/s12935-024-03258-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Juric D, de Bono JS, LoRusso PM, Nemunaitis J, Heath EI, Kwak EL et al (2017) A first-in-human, phase I, dose-escalation study of TAK-117, a selective PI3Kα isoform inhibitor, in patients with advanced solid malignancies. Clin Cancer Res 23(17):5015–5023. https://doi.org/10.1158/1078-0432.Ccr-16-2888

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi J-H, Kim KH, Roh K-H, Jung H, Lee A, Lee J-Y et al (2018) A PI3K p110α-selective inhibitor enhances the efficacy of anti-HER2/neu antibody therapy against breast cancer in mice. OncoImmunology 7(5):e1421890. https://doi.org/10.1080/2162402X.2017.1421890

Article  PubMed  PubMed Central  Google Scholar 

Asante D-B, Wiafe GA (2023) Therapeutic benefit of Vernonia amygdalina in the treatment of diabetes and its associated complications in preclinical studies. J Diabetes Res 2023:3159352. https://doi.org/10.1155/2023/3159352

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaur D, Kaur N, Chopra A (2019) A comprehensive review on phytochemistry and pharmacological activities of Vernonia amygdalina. J Pharmacognosy Phytochem 8(3):2629–2636

CAS  Google Scholar 

Hasibuan PAZ, Sitorus RKUAB, Hermawan A, Huda F, Waruwu SB, Satria D (2024) Anticancer activity of the ethylacetate fraction of Vernonia amygdalina Delile towards overexpression of HER-2 breast cancer cell lines. Pharmacia 71:1–8

Article  CAS  Google Scholar 

Hermawan A, Satria D, Hasibuan PAZ, Huda F, Tafrihan AS, Fatimah N et al (2024) Identification of potential target genes of cardiac glycosides from Vernonia amygdalina Delile in HER2+ breast cancer cells. S Afr J Bot 164:401–418

Article  CAS  Google Scholar 

Huda F, Bashari MH, Satria D, Hermawan A, Hasibuan PAZ, Dwiwina RG et al (2024) Cancer chemotherapeutic effect of Vernonia amygdalina Delile on glioblastoma brain cancer cell. Asian Pac J Cancer Prev 25(10):3589–3595

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hasibuan PAZ, Harahap U, Sitorus P, Satria D (2020) The anticancer activities of Vernonia amygdalina Delile. Leaves on 4T1 breast cancer cells through phosphoinositide 3-kinase (PI3K) pathway. Heliyon 6(7):e04449. https://doi.org/10.1016/j.heliyon.2020.e04449

Article  PubMed  PubMed Central  Google Scholar 

Jain S, Norinder U, Escher SE, Zdrazil B (2021) Combining in vivo data with in silico predictions for modeling hepatic steatosis by using stratified bagging and conformal prediction. Chem Res Toxicol 34(2):656–668. https://doi.org/10.1021/acs.chemrestox.0c00511

Article  CAS  PubMed 

Comments (0)

No login
gif