Neamțu M, Bild V, Vasincu A, Arcan OD, Bulea D, Ababei D-C, Rusu R-N, Macadan I, Sciucă AM, Neamțu A (2024) Inflammasome molecular insights in autoimmune diseases. Curr Issues Mol Biol 46(4):3502–3532. https://doi.org/10.3390/cimb46040220
Article CAS PubMed PubMed Central Google Scholar
Rasouli H, Yarani R, Pociot F, Popović-Djordjević J (2020) Anti-diabetic potential of plant alkaloids: revisiting current findings and future perspectives. Pharmacol Res 155:104723. https://doi-org.sndl1.arn.dz/https://doi.org/10.1016/j.phrs.2020.104723
Article CAS PubMed Google Scholar
Faisal S, Badshah SL, Kubra B, Emwas A-H, Jaremko M (2023) Alkaloids as potential antivirals. A comprehensive review. Nat Prod Bioprospect 13(1):4. https://doi.org/10.1007/s13659-022-00366-9
Article CAS PubMed PubMed Central Google Scholar
Debnath B, Singh WS, Das M, Goswami S, Singh MK, Maiti D, Manna K (2018) Role of plant alkaloids on human health: A review of biological activities. Mater Today Chem 9:56–72. https://doi.org/10.1016/j.mtchem.2018.05.001
Mallela VJ, Rudrapal M, Prasanth D, Pasala PK, Bendale AR, Bhattacharya S, Aldosari SM, Khan J (2024) Lotus seed (Nelumbinis semen) extract: anticancer potential and chemoprofiling by in vitro, in silico and GC-MS studies. Front Chem 12:1505272. https://doi.org/10.3389/fphar.2023.1234567
Issahaku AR, Mukelabai N, Agoni C, Rudrapal M, Aldosari SM, Almalki SG, Khan J (2022) Characterization of the binding of MRTX1133 as an avenue for the discovery of potential KRASG12D inhibitors for cancer therapy. Sci Rep 12(1):17796. https://doi.org/10.1038/s41598-022-22668-1
Article CAS PubMed PubMed Central Google Scholar
Issahaku AR, Salifu EY, Agoni C, Alahmdi MI, Abo-Dya NE, Soliman ME, Rudrapal M, Podila N (2023) Discovery of potential KRAS‐SOS1 inhibitors from South African natural compounds: an in Silico approach. Chem Select 8(24):e202300277. https://doi.org/10.1002/slct.202300277
Rudrapal M, Celik I, Chinnam S, Çevik UA, Tallei TE, Nizam A, Joy F, Abdellattif MH, Walode SG (2023) Analgesic and anti-inflammatory potential of Indole derivatives. Polycycl Aromat Compd 43(9):7732–7753. https://doi.org/10.1080/10406638.2022.2139733
Dutta R, Sharma M, Jha M (2020) Pharmacological evaluation of antiasthmatic activity of Fumaria officinalis extracts. Plant Arch 20(2):4308–4315
Raafat KM, El-Zahaby SA (2020) Niosomes of active Fumaria officinalis phytochemicals: antidiabetic, antineuropathic, anti-inflammatory, and possible mechanisms of action. Chin Med 15:28–31. https://doi.org/10.1186/s13020-020-00321-1
Aguiar R (2023) Fumaria officinalis L. active compounds and biological activities: A review. Int J Herb Med 11(5):144–151. https://doi.org/10.22271/flora.2023.v11.i5b.900
Al-Snafi AE (2020) Constituents and Pharmacology of Fumaria officinalis-A review. IOSR J Pharm 10(1):17–25
Quezel P, Santa S (1963) Nouvelle flore de l’Algérie et des régions désertiques méridionales. Eds. du Centre Nat. de la Recherche Scientifique. p. 238
Valpuesta Ma, Dı́az A, Suau R (1999) Coulteroberbinone, a quaternary isoquinoline alkaloid from Romneya coulteri. Phytochem 51(8):1157–1160. https://doi.org/10.1016/S0031-9422(98)00745-6
Mirke NB, Shelke PS, Malavdkar PR, Jagtap PN (2020) In vitro protein denaturation Inhibition assay of Eucalyptus globulus and Glycine max for potential anti-inflammatory activity. Innov Pharm Pharmacother 8(2):28. https://doi.org/10.31690/ipp.2020.v08i02.003
Winter CA, Risley EA, Nuss GW (1962) Carrageenin-induced edema in Hind paw of the rat as an assay for antiinflammatory drugs. Proc Soc Exp Biol Med 111(3):544–547. https://doi.org/10.3181/00379727-111-27849
Article CAS PubMed Google Scholar
O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open babel: an open chemical toolbox. J Cheminform 3:1–14. https://doi.org/10.1186/1758-2946-3-33
Dallakyan S, Olson AJ (2015) Small-molecule library screening by Docking with pyrx. In: Hempel JE, Williams CH, Hong CC (eds) Chemical biology: methods and protocols. Springer New York, New York, NY, pp 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19
Trott O, Olson A (2009) Software news and update AutoDock vina: improving the speed and accuracy of Docking with a new scoring function. J Effic Optim Multithreading 31:455–461. https://doi.org/10.1002/jcc.21334
Schrödinger L (2015) The PyMOL Molecular Graphics System, Version 1.8
Warren GL, Andrews CW, Capelli A-M, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2006) A critical assessment of Docking programs and scoring functions. J Med Chem 49(20):5912–5931. https://doi.org/10.1021/jm050362n
Article CAS PubMed Google Scholar
Frisch MJ (2009) Gaussian 09, Revision D.01. Gaussian, Inc. Wallingford CT 201
D R, K T, J. M (2009) GaussView.Version5. Semichem Inc, Shawnee Mission KS
Nishiyama Y, Moriyasu M, Ichimaru M, Iwasa K, Kato A, Mathenge SG, Mutiso PBC, Juma FD (2004) Quaternary isoquinoline alkaloids from Xylopia parviflora. Phytochem 65(7):939–944. https://doi.org/10.1016/j.phytochem.2003.12.010
Khamtache-Abderrahim S, Lequart-Pillon M, Gontier E, Gaillard I, Pilard S, Mathiron D, Djoudad-Kadji H, Maiza-Benabdesselam F (2016) Isoquinoline alkaloid fractions of Fumaria officinalis: characterization and evaluation of their antioxidant and antibacterial activities. Ind Crops Prod 94:1001–1008. https://doi.org/10.1016/j.indcrop.2016.09.016
Shang XF, Yang CJ, Morris-Natschke SL, Li JC, Yin XD, Liu YQ, Guo X, Peng JW, Goto M, Zhang JY (2020) Biologically active isoquinoline alkaloids covering 2014–2018. Med Res Rev 40(6):2212–2289. https://doi.org/10.1002/med.21703
Article CAS PubMed PubMed Central Google Scholar
Qasim S, Alamgeer, Kalsoom S, Shahzad M, Bukhari IA, Vohra F, Afzal S (2021) Rosuvastatin attenuates rheumatoid arthritis-associated manifestations via modulation of the pro-and anti-inflammatory cytokine network: a combination of in vitro and in vivo studies. ACS Omega 6(3):2074–2084. https://doi.org/10.1021/acsomega.0c05054
Article CAS PubMed PubMed Central Google Scholar
Yu C-H, Tang W-Z, Peng C, Sun T, Liu B, Li M, Xie X-F, Zhang H (2012) Diuretic, anti-inflammatory, and analgesic activities of the ethanol extract from Cynoglossum lanceolatum. J Ethnopharmacol 139(1):149–154. https://doi.org/10.1016/j.jep.2011.10.031
Mulla WA, Kuchekar S, Thorat V, Chopade A, Kuchekar B (2010) Antioxidant, antinociceptive anti-inflammatory activities of ethanolic extract of leaves of Alocasia indica (Schott). J Young Pharm 2(2):137–143. https://doi.org/10.4103/0975-1483.63152
Article CAS PubMed PubMed Central Google Scholar
Patil KR, Mahajan UB, Unger BS, Goyal SN, Belemkar S, Surana SJ, Ojha S, Patil CR (2019) Animal models of inflammation for screening of anti-inflammatory drugs: implications for the discovery and development of phytopharmaceuticals. Int J Mol Sci 20(18):4367. https://www.mdpi.com/1422-0067/20/18/4367#
CAS PubMed PubMed Central Google Scholar
Rolle J, Asante DO, Kok-Fong LL, Boucetta H, Seidu TA, Tai LL, Alolga RN (2021) Jatrorrhizine: a review of its Pharmacological effects. J Pharm Pharmacol 73(6):709–719. https://doi.org/10.1093/jpp/rgaa065
Zhong F, Chen Y, Chen J, Liao H, Li Y, Ma Y (2022) Jatrorrhizine: a review of sources, pharmacology, pharmacokinetics and toxicity. Front Pharmacol 12:783127. https://doi.org/10.3389/fphar.2021.783127
Article CAS PubMed PubMed Central Google Scholar
Alam MB, Ju M-K, Kwon Y-G, Lee SH (2019) Protopine attenuates inflammation stimulated by Carrageenan and LPS via the MAPK/NF-κB pathway. Food Chem Toxicol 131:110583. https://doi.org/10.1016/j.fct.2019.110583
Article CAS PubMed Google Scholar
Bribi N, Belmouhoub M, Maiza F (2017) Activités anti-inflammatoire et analgésique de l’extrait éthanolique de Fumaria capreolata. Phytother 15:211–216. https://doi.org/10.1007/s10298-016-1035-6
Comments (0)