Anti-inflammatory potential of isoquinoline alkaloids from : in vitro, in vivo, and in silico evaluation

Neamțu M, Bild V, Vasincu A, Arcan OD, Bulea D, Ababei D-C, Rusu R-N, Macadan I, Sciucă AM, Neamțu A (2024) Inflammasome molecular insights in autoimmune diseases. Curr Issues Mol Biol 46(4):3502–3532. https://doi.org/10.3390/cimb46040220

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rasouli H, Yarani R, Pociot F, Popović-Djordjević J (2020) Anti-diabetic potential of plant alkaloids: revisiting current findings and future perspectives. Pharmacol Res 155:104723. https://doi-org.sndl1.arn.dz/https://doi.org/10.1016/j.phrs.2020.104723

Article  CAS  PubMed  Google Scholar 

Faisal S, Badshah SL, Kubra B, Emwas A-H, Jaremko M (2023) Alkaloids as potential antivirals. A comprehensive review. Nat Prod Bioprospect 13(1):4. https://doi.org/10.1007/s13659-022-00366-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Debnath B, Singh WS, Das M, Goswami S, Singh MK, Maiti D, Manna K (2018) Role of plant alkaloids on human health: A review of biological activities. Mater Today Chem 9:56–72. https://doi.org/10.1016/j.mtchem.2018.05.001

Article  CAS  Google Scholar 

Mallela VJ, Rudrapal M, Prasanth D, Pasala PK, Bendale AR, Bhattacharya S, Aldosari SM, Khan J (2024) Lotus seed (Nelumbinis semen) extract: anticancer potential and chemoprofiling by in vitro, in silico and GC-MS studies. Front Chem 12:1505272. https://doi.org/10.3389/fphar.2023.1234567

Issahaku AR, Mukelabai N, Agoni C, Rudrapal M, Aldosari SM, Almalki SG, Khan J (2022) Characterization of the binding of MRTX1133 as an avenue for the discovery of potential KRASG12D inhibitors for cancer therapy. Sci Rep 12(1):17796. https://doi.org/10.1038/s41598-022-22668-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Issahaku AR, Salifu EY, Agoni C, Alahmdi MI, Abo-Dya NE, Soliman ME, Rudrapal M, Podila N (2023) Discovery of potential KRAS‐SOS1 inhibitors from South African natural compounds: an in Silico approach. Chem Select 8(24):e202300277. https://doi.org/10.1002/slct.202300277

Article  CAS  Google Scholar 

Rudrapal M, Celik I, Chinnam S, Çevik UA, Tallei TE, Nizam A, Joy F, Abdellattif MH, Walode SG (2023) Analgesic and anti-inflammatory potential of Indole derivatives. Polycycl Aromat Compd 43(9):7732–7753. https://doi.org/10.1080/10406638.2022.2139733

Article  CAS  Google Scholar 

Dutta R, Sharma M, Jha M (2020) Pharmacological evaluation of antiasthmatic activity of Fumaria officinalis extracts. Plant Arch 20(2):4308–4315

Google Scholar 

Raafat KM, El-Zahaby SA (2020) Niosomes of active Fumaria officinalis phytochemicals: antidiabetic, antineuropathic, anti-inflammatory, and possible mechanisms of action. Chin Med 15:28–31. https://doi.org/10.1186/s13020-020-00321-1

Article  CAS  Google Scholar 

Aguiar R (2023) Fumaria officinalis L. active compounds and biological activities: A review. Int J Herb Med 11(5):144–151. https://doi.org/10.22271/flora.2023.v11.i5b.900

Article  Google Scholar 

Al-Snafi AE (2020) Constituents and Pharmacology of Fumaria officinalis-A review. IOSR J Pharm 10(1):17–25

CAS  Google Scholar 

Quezel P, Santa S (1963) Nouvelle flore de l’Algérie et des régions désertiques méridionales. Eds. du Centre Nat. de la Recherche Scientifique. p. 238

Valpuesta Ma, Dı́az A, Suau R (1999) Coulteroberbinone, a quaternary isoquinoline alkaloid from Romneya coulteri. Phytochem 51(8):1157–1160. https://doi.org/10.1016/S0031-9422(98)00745-6

Article  Google Scholar 

Mirke NB, Shelke PS, Malavdkar PR, Jagtap PN (2020) In vitro protein denaturation Inhibition assay of Eucalyptus globulus and Glycine max for potential anti-inflammatory activity. Innov Pharm Pharmacother 8(2):28. https://doi.org/10.31690/ipp.2020.v08i02.003

Article  CAS  Google Scholar 

Winter CA, Risley EA, Nuss GW (1962) Carrageenin-induced edema in Hind paw of the rat as an assay for antiinflammatory drugs. Proc Soc Exp Biol Med 111(3):544–547. https://doi.org/10.3181/00379727-111-27849

Article  CAS  PubMed  Google Scholar 

O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open babel: an open chemical toolbox. J Cheminform 3:1–14. https://doi.org/10.1186/1758-2946-3-33

Article  CAS  Google Scholar 

Dallakyan S, Olson AJ (2015) Small-molecule library screening by Docking with pyrx. In: Hempel JE, Williams CH, Hong CC (eds) Chemical biology: methods and protocols. Springer New York, New York, NY, pp 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19

Chapter  Google Scholar 

Trott O, Olson A (2009) Software news and update AutoDock vina: improving the speed and accuracy of Docking with a new scoring function. J Effic Optim Multithreading 31:455–461. https://doi.org/10.1002/jcc.21334

Article  CAS  Google Scholar 

Schrödinger L (2015) The PyMOL Molecular Graphics System, Version 1.8

Warren GL, Andrews CW, Capelli A-M, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2006) A critical assessment of Docking programs and scoring functions. J Med Chem 49(20):5912–5931. https://doi.org/10.1021/jm050362n

Article  CAS  PubMed  Google Scholar 

Frisch MJ (2009) Gaussian 09, Revision D.01. Gaussian, Inc. Wallingford CT 201

D R, K T, J. M (2009) GaussView.Version5. Semichem Inc, Shawnee Mission KS

Google Scholar 

Nishiyama Y, Moriyasu M, Ichimaru M, Iwasa K, Kato A, Mathenge SG, Mutiso PBC, Juma FD (2004) Quaternary isoquinoline alkaloids from Xylopia parviflora. Phytochem 65(7):939–944. https://doi.org/10.1016/j.phytochem.2003.12.010

Article  CAS  Google Scholar 

Khamtache-Abderrahim S, Lequart-Pillon M, Gontier E, Gaillard I, Pilard S, Mathiron D, Djoudad-Kadji H, Maiza-Benabdesselam F (2016) Isoquinoline alkaloid fractions of Fumaria officinalis: characterization and evaluation of their antioxidant and antibacterial activities. Ind Crops Prod 94:1001–1008. https://doi.org/10.1016/j.indcrop.2016.09.016

Article  CAS  Google Scholar 

Shang XF, Yang CJ, Morris-Natschke SL, Li JC, Yin XD, Liu YQ, Guo X, Peng JW, Goto M, Zhang JY (2020) Biologically active isoquinoline alkaloids covering 2014–2018. Med Res Rev 40(6):2212–2289. https://doi.org/10.1002/med.21703

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qasim S, Alamgeer, Kalsoom S, Shahzad M, Bukhari IA, Vohra F, Afzal S (2021) Rosuvastatin attenuates rheumatoid arthritis-associated manifestations via modulation of the pro-and anti-inflammatory cytokine network: a combination of in vitro and in vivo studies. ACS Omega 6(3):2074–2084. https://doi.org/10.1021/acsomega.0c05054

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu C-H, Tang W-Z, Peng C, Sun T, Liu B, Li M, Xie X-F, Zhang H (2012) Diuretic, anti-inflammatory, and analgesic activities of the ethanol extract from Cynoglossum lanceolatum. J Ethnopharmacol 139(1):149–154. https://doi.org/10.1016/j.jep.2011.10.031

Article  PubMed  Google Scholar 

Mulla WA, Kuchekar S, Thorat V, Chopade A, Kuchekar B (2010) Antioxidant, antinociceptive anti-inflammatory activities of ethanolic extract of leaves of Alocasia indica (Schott). J Young Pharm 2(2):137–143. https://doi.org/10.4103/0975-1483.63152

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patil KR, Mahajan UB, Unger BS, Goyal SN, Belemkar S, Surana SJ, Ojha S, Patil CR (2019) Animal models of inflammation for screening of anti-inflammatory drugs: implications for the discovery and development of phytopharmaceuticals. Int J Mol Sci 20(18):4367. https://www.mdpi.com/1422-0067/20/18/4367#

CAS  PubMed  PubMed Central  Google Scholar 

Rolle J, Asante DO, Kok-Fong LL, Boucetta H, Seidu TA, Tai LL, Alolga RN (2021) Jatrorrhizine: a review of its Pharmacological effects. J Pharm Pharmacol 73(6):709–719. https://doi.org/10.1093/jpp/rgaa065

Article  PubMed  Google Scholar 

Zhong F, Chen Y, Chen J, Liao H, Li Y, Ma Y (2022) Jatrorrhizine: a review of sources, pharmacology, pharmacokinetics and toxicity. Front Pharmacol 12:783127. https://doi.org/10.3389/fphar.2021.783127

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alam MB, Ju M-K, Kwon Y-G, Lee SH (2019) Protopine attenuates inflammation stimulated by Carrageenan and LPS via the MAPK/NF-κB pathway. Food Chem Toxicol 131:110583. https://doi.org/10.1016/j.fct.2019.110583

Article  CAS  PubMed  Google Scholar 

Bribi N, Belmouhoub M, Maiza F (2017) Activités anti-inflammatoire et analgésique de l’extrait éthanolique de Fumaria capreolata. Phytother 15:211–216. https://doi.org/10.1007/s10298-016-1035-6

Comments (0)

No login
gif