Integrated machine learning and deep learning-based virtual screening framework identifies novel natural GSK-3β inhibitors for Alzheimer’s disease

Ding M-R, Qu Y-J, Hu B, An H-M (2022) Signal pathways in the treatment of Alzheimer’s disease with traditional Chinese medicine. Biomed Pharmacother 152:113208. https://doi.org/10.1016/j.biopha.2022.113208

Article  PubMed  Google Scholar 

Better MA (2023) Alzheimer’s disease facts and figures. Alzheimer Dementia 19(4):1598–1695. https://doi.org/10.1002/alz.13016

Article  Google Scholar 

Jia L, Quan M, Fu Y, Zhao T, Li Y, Wei C, Tang Y, Qin Q, Wang F, Qiao Y, Shi S, Wang YJ, Du Y, Zhang J, Zhang J, Luo B, Qu Q, Zhou C, Gauthier S, Jia J (2020) Dementia in China: epidemiology, clinical management, and research advances. The Lancet Neurology 19(1):81–92. https://doi.org/10.1016/s1474-4422(19)30290-x

Article  PubMed  Google Scholar 

Hodson R (2018) Alzheimer’s disease. Nature 559(7715):S1. https://doi.org/10.1038/d41586-018-05717-6

Article  CAS  PubMed  Google Scholar 

Ahmad F, Karan A, Sharma R, Sharma NS, Sundar V, Jayaraj R, Mukherjee S, DeCoster MA (2024) Evolving therapeutic interventions for the management and treatment of Alzheimer’s disease. Ageing Res Rev 95:102229. https://doi.org/10.1016/j.arr.2024.102229

Article  CAS  PubMed  Google Scholar 

Cummings J (2021) New approaches to symptomatic treatments for Alzheimer’s disease. Mol Neurodegener 16(1):2. https://doi.org/10.1186/s13024-021-00424-9

Article  PubMed  PubMed Central  Google Scholar 

Cummings J, Fox N (2017) Defining disease modifying therapy for Alzheimer’s disease. J Prevent Alzheimer Dis 4(2):109–115. https://doi.org/10.14283/jpad.2017.12

Article  CAS  Google Scholar 

Zhang Y, Chen J, Li Y, Jiao B, Luo S (2025) Disease-modifying therapies for Alzheimer’s disease: clinical trial progress and opportunity. Ageing Res Rev 103:102595. https://doi.org/10.1016/j.arr.2024.102595

Article  CAS  PubMed  Google Scholar 

Zhao Z, Liu Y, Ruan S, Hu Y (2023) Current anti-amyloid-β therapy for Alzheimer’s disease treatment: from clinical research to nanomedicine. Int J Nanomed 18:7825–7845. https://doi.org/10.2147/ijn.S444115

Article  CAS  Google Scholar 

Hung AS, Liang Y, Chow TC, Tang HC, Wu SL, Wai MS, Yew DT (2016) Mutated tau, amyloid and neuroinflammation in Alzheimer disease-a brief review. Prog Histochem Cytochem 51(1):1–8. https://doi.org/10.1016/j.proghi.2016.01.001

Article  CAS  PubMed  Google Scholar 

Lauretti E, Dincer O, Praticò D (2020) Glycogen synthase kinase-3 signaling in Alzheimer’s disease. Biochim Biophys Acta Mol Cell Res 1867(5):118664. https://doi.org/10.1016/j.bbamcr.2020.118664

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ly PT, Wu Y, Zou H, Wang R, Zhou W, Kinoshita A, Zhang M, Yang Y, Cai F, Woodgett J, Song W (2013) Inhibition of GSK3β-mediated BACE1 expression reduces Alzheimer-associated phenotypes. J Clin Investig 123(1):224–235. https://doi.org/10.1172/jci64516

Article  CAS  PubMed  Google Scholar 

Chen C-H, Zhou W, Liu S, Deng Y, Cai F, Tone M, Tone Y, Tong Y, Song W (2012) Increased NF-κB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’s disease. Int J Neuropsychopharmacol 15(1):77–90. https://doi.org/10.1017/s1461145711000149

Article  CAS  PubMed  Google Scholar 

Sathiya Priya C, Vidhya R, Kalpana K, Anuradha CV (2019) Indirubin-3′-monoxime prevents aberrant activation of GSK-3β/NF-κB and alleviates high fat-high fructose induced Aβ-aggregation, gliosis and apoptosis in mice brain. Int Immunopharmacol 70:396–407. https://doi.org/10.1016/j.intimp.2019.02.053

Article  CAS  PubMed  Google Scholar 

Sequeira RC, Godad A (2024) Understanding glycogen synthase kinase-3: a novel avenue for Alzheimer’s disease. Mol Neurobiol 61(7):4203–4221. https://doi.org/10.1007/s12035-023-03839-1

Article  CAS  PubMed  Google Scholar 

Engel T, Goñi-Oliver P, Lucas JJ, Avila J, Hernández F (2006) Chronic lithium administration to FTDP-17 tau and GSK-3beta overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert. J Neurochem 99(6):1445–1455. https://doi.org/10.1111/j.1471-4159.2006.04139.x

Article  CAS  PubMed  Google Scholar 

Sayas CL, Ávila J (2021) GSK-3 and Tau: a key duet in Alzheimer’s disease. Cells. https://doi.org/10.3390/cells10040721

Article  PubMed  PubMed Central  Google Scholar 

Zhang ZX, Zhao RP, Wang DS, Wang AN (2016) Fuzhisan ameliorates Aβ production and tau phosphorylation in hippocampal of 11month old APP/PS1 transgenic mice: a western blot study. Exp Gerontol 84:88–95. https://doi.org/10.1016/j.exger.2016.09.003

Article  CAS  PubMed  Google Scholar 

Zhao J, Wei M, Guo M, Wang M, Niu H, Xu T, Zhou Y (2024) GSK3: a potential target and pending issues for treatment of Alzheimer’s disease. CNS Neurosci Ther 30(7):e14818. https://doi.org/10.1111/cns.14818

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang F, Gannon M, Chen Y, Yan S, Zhang S, Feng W, Tao J, Sha B, Liu Z, Saito T, Saido T, Keene CD, Jiao K, Roberson ED, Xu H, Wang Q (2020) β-amyloid redirects norepinephrine signaling to activate the pathogenic GSK3β/tau cascade. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aay6931

Article  PubMed  PubMed Central  Google Scholar 

Noel A, Barrier L, Ingrand S (2016) The Tyr216 phosphorylated form of GSK3β contributes to tau phosphorylation at PHF-1 epitope in response to Aβ in the nucleus of SH-SY5Y cells. Life Sci 158:14–21. https://doi.org/10.1016/j.lfs.2016.06.020

Article  CAS  PubMed  Google Scholar 

Park H, Kam TI, Kim Y, Choi H, Gwon Y, Kim C, Koh JY, Jung YK (2012) Neuropathogenic role of adenylate kinase-1 in Aβ-mediated tau phosphorylation via AMPK and GSK3β. Hum Mol Genet 21(12):2725–2737. https://doi.org/10.1093/hmg/dds100

Article  CAS  PubMed  Google Scholar 

Chakraborty P, Ibáñez de Opakua A, Purslow JA, Fromm SA, Chatterjee D, Zachrdla M, Zhuang S, Puri S, Wolozin B, Zweckstetter M (2024) GSK3β phosphorylation catalyzes the aggregation of tau into Alzheimer’s disease-like filaments. Proc Natl Acad Sci USA 121(52):e2414176121. https://doi.org/10.1073/pnas.2414176121

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leroy K, Brion J-P (1999) Developmental expression and localization of glycogen synthase kinase-3β in rat brain. J Chem Neuroanat 16(4):279–293. https://doi.org/10.1016/S0891-0618(99)00012-5

Article  CAS  PubMed  Google Scholar 

Beurel E, Grieco SF, Jope RS (2015) Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther 148:114–131. https://doi.org/10.1016/j.pharmthera.2014.11.016

Article  CAS  PubMed  Google Scholar 

Meunier CN, Chameau P, Fossier PM (2017) Modulation of Synaptic Plasticity in the Cortex Needs to Understand All the Players. Front Synaptic Neurosci 9:2. https://doi.org/10.3389/fnsyn.2017.00002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Onishi T, Iwashita H, Uno Y, Kunitomo J, Saitoh M, Kimura E, Fujita H, Uchiyama N, Kori M, Takizawa M (2011) A novel glycogen synthase kinase-3 inhibitor 2-methyl-5-(3--1-benzofuran-5-yl)-1,3,4-oxadiazole decreases tau phosphorylation and ameliorates cognitive deficits in a transgenic model of Alzheimer’s disease. J Neurochem 119(6):1330–1340. https://doi.org/10.1111/j.1471-4159.2011.07532.x

Article  CAS  PubMed  Google Scholar 

Avrahami L, Farfara D, Shaham-Kol M, Vassar R, Frenkel D, Eldar-Finkelman H (2013) Inhibition of glycogen synthase kinase-3 ameliorates β-amyloid pathology and restores lysosomal acidification and mammalian target of rapamycin activity in the Alzheimer disease mouse model: in vivo and in vitro studies. J Biol Chem 288(2):1295–1306.

Comments (0)

No login
gif