Mechanistic insights into PROTAC-mediated degradation through an integrated framework of molecular dynamics, free energy landscapes, and quantum mechanics: A case study on kinase degraders

Pettersson M, Crews CM (2019) PROteolysis targeting chimeras (PROTACs)—past, present, and future. Drug Discov Today Technol 31:15–27

PubMed  PubMed Central  Google Scholar 

Békés M, Langley DR, Crews CM (2022) PROTAC targeted protein degraders: the past is prologue. Nat Rev Drug Discov 21(2):181–200

PubMed  PubMed Central  Google Scholar 

Hu Z, Crews CM (2022) Recent developments in PROTAC mediated protein degradation: from bench to clinic. ChemBioChem 23(2):e202100270

CAS  PubMed  Google Scholar 

Zhao X, Chen Y, Su H, Zhang Y (2023) From classic medicinal chemistry to state-of-the-art interdisciplinary medicine: recent advances in proteolysis-targeting chimeras technology. Interdiscip Med 1

Wan Y, Yan C, Gao H, Liu T (2020) Small-molecule protacs: novel agents for cancer therapy. Future Med Chem 12(10):915–938

CAS  PubMed  Google Scholar 

Liu Y, Liang J, Zhu R, Yang Y, Wang Y, Wei W, Li H, Chen L (2024) Application of protacs in target identification and target validation. Acta Mater Med 3(1):72–87

CAS  PubMed  PubMed Central  Google Scholar 

Wang C, Zhang Y, Chen W, Wu Y, Xing D (2024) New-generation advanced protacs as potential therapeutic agents in cancer therapy. Mol Cancer 23(1):110

PubMed  PubMed Central  Google Scholar 

Gadd M, Testa A, Lucas X (2017) Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat Chem Biol 13:514–521

CAS  PubMed  PubMed Central  Google Scholar 

Smith BE, Wang SL, Jaime-Figueroa S (2019) Differential PROTAC substrate specificity dictated by orientation of recruited E3-ligase. Nat Commun 10:131

PubMed  PubMed Central  Google Scholar 

Han B (2020) A suite of mathematical solutions to describe ternary complex formation and their application to targeted protein degradation by heterobifunctional ligands. J Biol Chem 295(45):15280–15291

CAS  PubMed  PubMed Central  Google Scholar 

Roy MJ, Winkler S, Hughes SJ (2019) SPR-measured dissociation kinetics of PROTAC ternary complexes influence target degradation rate. ACS Chem Biol 14:361–368

CAS  PubMed  PubMed Central  Google Scholar 

Schwalm MP, Kramer A, Dolle A (2023) Tracking the PROTAC degradation pathway in living cells highlights the importance of ternary complex measurement for PROTAC optimization. Cell Chem Biol 30:753–765

CAS  PubMed  Google Scholar 

Bai N, Miller SA, Andrianov GV (2021) Rationalizing PROTAC-mediated ternary complex formation using Rosetta. J Chem Inf Model 61:1368–1382

CAS  PubMed  PubMed Central  Google Scholar 

Drummond ML, Henry A, Li H, Williams CI (2020) Improved accuracy for modeling PROTAC-mediated ternary complex formation and targeted protein degradation via new in Silico methodologies. J Chem Inf Model 60:5234–5254

CAS  PubMed  Google Scholar 

Drummond ML, Williams CI (2019) In Silico modeling of PROTAC-mediated ternary complexes: validation and application. J Chem Inf Model 59:1634–1644

CAS  PubMed  Google Scholar 

Zaidman D, Prilusky J, London N (2020) PRosettaC: Rosetta based modeling of PROTAC mediated ternary complexes. J Chem Inf Model 60:4894–4903

CAS  PubMed  PubMed Central  Google Scholar 

Ward JA, Perez-Lopez C, Mayor-Ruiz C (2023) Biophysical and computational approaches to study ternary complexes: a ‘cooperative relationship’ to rationalize targeted protein degradation. ChemBioChem 24(10):e202300163

CAS  PubMed  Google Scholar 

Rossetti P, Apprato G, Caron G (2024) DegraderTCM: a computationally pairing approach for predicting ternary degradation complexes. ACS Med Chem Lett 15(1):45–53

CAS  PubMed  Google Scholar 

Weng G, Li D, Kang Y, Hou T (2021) Integrative modeling of PROTAC-mediated ternary complexes. J Med Chem 64(21):16271–16281

CAS  PubMed  Google Scholar 

Kumar H, Sobhia ME (2024) Interplay of PROTAC complex dynamics for undruggable targets: insights into ternary complex behavior and linker design. ACS Med Chem Lett 15(8):1306–1318

CAS  PubMed  Google Scholar 

Lee J, Lee Y, Jung YM (2022) Discovery of E3-ligase ligands for target protein degradation. Molecules 27(19):6515

CAS  PubMed  PubMed Central  Google Scholar 

Feral A, Laconde G, Amblard M, Masurie N (2020) PROteolysis targeting chimeras (PROTACs) strategy applied to kinases: recent advances. Adv Ther 3(11):2000148

Google Scholar 

Groppe JC (2019) Induced degradation of protein kinases by bifunctional small molecules: a next-generation strategy. Expert Opin Drug Discov 14(12):1237–1253

CAS  PubMed  Google Scholar 

Yao T, Xiao H, Wang H, Xu X (2022) Recent advances in protacs for drug targeted protein research. Int J Mol Sci 23(18):10328

CAS  PubMed  PubMed Central  Google Scholar 

Yu F, Cai M, Shao L, Zhang J (2021) Targeting protein kinases degradation by protacs. Front Chem 9:679120

CAS  PubMed  PubMed Central  Google Scholar 

Golubovskaya VM (2014) Targeting FAK in human cancer: from finding to first clinical trials. Front Biosci 19:687–706

CAS  Google Scholar 

Gao H, Wu Y, Sun Y (2019) Design, synthesis, and evaluation of highly potent FAK-targeting protacs. ACS Med Chem Lett 11(10):1855–1862

PubMed  PubMed Central  Google Scholar 

Cromm PM, Samarasinghe KTG, Hines J, Crews CM (2018) Addressing kinase-independent functions of FAK via PROTAC-mediated degradation. J Am Chem Soc 140(49):17019–17026

CAS  PubMed  Google Scholar 

Montoya S, Bourcier J, Noviski M (2024) Kinase-impaired BTK mutations are susceptible to clinical-stage BTK and IKZF1/3 degrader NX-2127. Science 383:eadi5798

CAS  PubMed  PubMed Central  Google Scholar 

Lu J, Huang Y, Huang J (2022) Discovery of the first examples of threonine tyrosine kinase PROTAC degraders. J Med Chem 65(3):2313–2328

CAS  PubMed  Google Scholar 

Sun Y, Chen Z, Liu G (2022) Degraders targeting protein-protein interactions for cancer therapy. Med Res Rev 42(6):1044–1072

Google Scholar 

Wurz RP, Rui H, Dellamaggiore K (2023) Affinity and cooperativity modulate ternary complex formation to drive targeted protein degradation. Nat Commun 14:4177

CAS  PubMed  PubMed Central  Google Scholar 

Girardini M, Maniaci C, Hughes SJ (2019) Cereblon versus VHL: hijacking E3 ligases against each other using protacs. Bioorg Med Chem 27:2466–2479

CAS  PubMed  PubMed Central  Google Scholar 

Zorba A, Nguyen C, Xu Y (2018) Delineating the role of cooperativity in the design of potent protacs for BTK. Proc Natl Acad Sci U S A 115(31):E7285–E7292

PubMed  PubMed Central  Google Scholar 

Jiang H, Xiong H, Gu SX, Wang M (2023) E3-ligase ligand optimization of clinical protacs. Front Chem 11:1098331

CAS  PubMed  PubMed Central  Google Scholar 

Madushanka A, Moura RT Jr, Verma N, Kraka E (2023) Quantum mechanical assessment of protein–ligand hydrogen bond energy patterns: insights from semiempirical tight-binding and local vibrational mode theory. Int J Mol Sci 24(7):6311

CAS  PubMed  PubMed Central  Google Scholar 

Law RP, Nunes J, Chung CW (2021) Discovery and characterisation of highly cooperative FAK-degrading protacs. Angew Chem Int Ed Engl 60(43):23327–23334

CAS  PubMed  Google Scholar 

Crawford JJ, Johnson AR, Misner DL (2018) Discovery of GDC-0853: a potent, selective, and noncovalent bruton’s tyrosine kinase inhibitor in early clinical development. J Med Chem 61:2227–2245

CAS  PubMed  Google Scholar 

Uitdehaag JC, de Man J, Willemsen-Seegers N (2017) Target residence time-guided optimization on TTK kinase results in i

Comments (0)

No login
gif