Raghavendra NM, Pingili D, Kadasi S et al (2018) Dual or multi-targeting inhibitors: the next generation anticancer agents. Eur J Med Chem 143:1277–1300. https://doi.org/10.1016/j.ejmech.2017.10.021
Article CAS PubMed Google Scholar
Lu J-J, Pan W, Hu Y-J, Wang Y-T (2012) Multi-target drugs: the trend of drug research and development. PLoS ONE 7:e40262. https://doi.org/10.1371/journal.pone.0040262
Article CAS PubMed PubMed Central Google Scholar
Jiang Q, Li M, Li H, Chen L (2022) Entrectinib, a new multi-target inhibitor for cancer therapy. Biomed Pharmacother 150:112974. https://doi.org/10.1016/j.biopha.2022.112974
Article CAS PubMed Google Scholar
Ling Y, Liu J, Qian J et al (2020) Recent advances in multi-target drugs targeting protein kinases and histone deacetylases in cancer therapy. Curr Med Chem 27:7264–7288. https://doi.org/10.2174/0929867327666200102115720
Article CAS PubMed Google Scholar
Zimmermann GR, Lehár J, Keith CT (2007) Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov Today 12:34–42. https://doi.org/10.1016/j.drudis.2006.11.008
Article CAS PubMed Google Scholar
Tao L, Zhu F, Xu F et al (2015) Co-targeting cancer drug escape pathways confers clinical advantage for multi-target anticancer drugs. Pharmacol Res 102:123–131. https://doi.org/10.1016/j.phrs.2015.09.019
Article CAS PubMed Google Scholar
Doostmohammadi A, Jooya H, Ghorbanian K et al (2024) Potentials and future perspectives of multi-target drugs in cancer treatment: the next generation anti-cancer agents. Cell Commun Signal 22:228. https://doi.org/10.1186/s12964-024-01607-9
Article PubMed PubMed Central Google Scholar
Laudadio E, Mangano L, Minnelli C (2024) Chemical Scaffolds for the clinical development of mutant-selective and reversible fourth-generation EGFR-TKIs in NSCLC. ACS Chem Biol 19:839–854. https://doi.org/10.1021/acschembio.4c00028
Article CAS PubMed Google Scholar
Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492
Mohan A, Garg A, Gupta A et al (2020) Clinical profile of lung cancer in North India: A 10-year analysis of 1862 patients from a tertiary care center. Lung India 37:190. https://doi.org/10.4103/lungindia.lungindia_333_19
Article PubMed PubMed Central Google Scholar
Reck M, Carbone DP, Garassino M, Barlesi F (2021) Targeting KRAS in non-small-cell lung cancer: recent progress and new approaches. Ann Oncol 32:1101–1110. https://doi.org/10.1016/j.annonc.2021.06.001
Article CAS PubMed Google Scholar
Li J, Zhao L, Pan Y et al (2020) SMYD3 overexpression indicates poor prognosis and promotes cell proliferation, migration and invasion in non-small cell lung cancer. Int J Oncol 57:756–766. https://doi.org/10.3892/ijo.2020.5095
Article CAS PubMed PubMed Central Google Scholar
Liu J, Ao L, Jia W et al (2024) GFPT2 controls immune evasion in EGFR-mutated non-small cell lung cancer. Biol Sci. https://doi.org/10.21203/rs.3.rs-4203208/v1
Amin A, Gali-Muhtasib H, Ocker M, Schneider-Stock R (2009) Overview of major classes of plant-derived anticancer drugs. Int J Biomed Sci: IJBS 5:1
CAS PubMed PubMed Central Google Scholar
Siddiqui AJ, Jahan S, Singh R et al (2022) Plants in anticancer drug discovery: from molecular mechanism to chemoprevention. Biomed Res Int 2022:1–18. https://doi.org/10.1155/2022/5425485
Morgan CA, Hurley TD (2015) Development of a high-throughput in vitro assay to identify selective inhibitors for human ALDH1A1. Chem Biol Interact 234:29–37. https://doi.org/10.1016/j.cbi.2014.10.028
Article CAS PubMed Google Scholar
Ruegenberg S, Horn M, Pichlo C et al (2020) Loss of GFAT-1 feedback regulation activates the hexosamine pathway that modulates protein homeostasis. Nat Commun 11:687. https://doi.org/10.1038/s41467-020-14524-5
Article CAS PubMed PubMed Central Google Scholar
Fu W, Liu N, Qiao Q et al (2016) Structural basis for substrate preference of SMYD3, a SET domain-containing Protein Lysine Methyltransferase. J Biol Chem 291:9173–9180. https://doi.org/10.1074/jbc.M115.709832
Article CAS PubMed PubMed Central Google Scholar
Hunter JC, Gurbani D, Ficarro SB et al (2014) In situ selectivity profiling and crystal structure of SML-8-73-1, an active site inhibitor of oncogenic K-Ras G12C. Proc Natl Acad Sci 111:8895–8900. https://doi.org/10.1073/pnas.1404639111
Article CAS PubMed PubMed Central Google Scholar
Dallakyan S, Olson AJ (2015) Small-molecule library screening by docking with PyRx. Methods Mol Biol 1263:243–250. https://doi.org/10.1007/978-1-4939-2269-7_19/COVER
Article CAS PubMed Google Scholar
de Sousa ACC, Combrinck JM, Maepa K, Egan TJ (2020) Virtual screening as a tool to discover new β-haematin inhibitors with activity against malaria parasites. Sci Rep 10:3374. https://doi.org/10.1038/s41598-020-60221-0
Article CAS PubMed PubMed Central Google Scholar
Egbuna C, Patrick-Iwuanyanwu KC, Onyeike EN et al (2022) FMS-like tyrosine kinase-3 (FLT3) inhibitors with better binding affinity and ADMET properties than sorafenib and gilteritinib against acute myeloid leukemia: in silico studies. J Biomol Struct Dyn 40:12248–12259. https://doi.org/10.1080/07391102.2021.1969286
Article CAS PubMed Google Scholar
Yen S-C, Chen L-C, Huang H-L et al (2022) Identification of a dual FLT3 and MNK2 inhibitor for acute myeloid leukemia treatment using a structure-based virtual screening approach. Bioorg Chem 121:105675. https://doi.org/10.1016/j.bioorg.2022.105675
Article CAS PubMed Google Scholar
Ravi L, Kumar KA, G R SK, et al (2024) Behenic Acid as a multi-target inhibiting antibacterial phytochemical against Vibrio parahaemolyticus and Aeromonas hydrophila for effective management of aquaculture infections: an in-silico, in-vitro & in-vivo experimentation. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2024.2317988
Ravi L, Kumar KA, Kumari GRS et al (2024) Stearyl palmitate a multi-target inhibitor against breast cancer: in-silico, in-vitro & in-vivo approach. J Biomol Struct Dyn 42:10057–10074. https://doi.org/10.1080/07391102.2023.2255271
Article CAS PubMed Google Scholar
Lilkova E (2015) The PyMOL Molecular Graphics System, Version 2.0 Schrodinger, LLC
Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. “Protein Engineering, Design and Selection” 8:127–134. https://doi.org/10.1093/protein/8.2.127
Bergdorf M, Avi R-M, Xinyi G, et al (2021) Desmond/GPU performance as of April 2021. DE Shaw Research, Tech Rep
Akter R, Yang DU, Ahn JC et al (2023) Comparison of in vitro estrogenic activity of Polygoni multiflori Radix and Cynanchi wilfordii Radix via the enhancement of ERα/β expression in MCF7 cells. Molecules 28:2199. https://doi.org/10.3390/molecules28052199
Article CAS PubMed PubMed Central Google Scholar
Kim J-S, Lim H, Seo J-Y et al (2022) GPR183 regulates 7α,25-Dihydroxycholesterol-induced Oxiapoptophagy in L929 mouse fibroblast cell. Molecules 27:4798. https://doi.org/10.3390/molecules27154798
Comments (0)