“Heptadecanol” a phytochemical multi-target inhibitor of SMYD3 & GFPT2 proteins in non-small cell lung cancer: an in-silico & in-vitro investigation

Raghavendra NM, Pingili D, Kadasi S et al (2018) Dual or multi-targeting inhibitors: the next generation anticancer agents. Eur J Med Chem 143:1277–1300. https://doi.org/10.1016/j.ejmech.2017.10.021

Article  CAS  PubMed  Google Scholar 

Lu J-J, Pan W, Hu Y-J, Wang Y-T (2012) Multi-target drugs: the trend of drug research and development. PLoS ONE 7:e40262. https://doi.org/10.1371/journal.pone.0040262

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang Q, Li M, Li H, Chen L (2022) Entrectinib, a new multi-target inhibitor for cancer therapy. Biomed Pharmacother 150:112974. https://doi.org/10.1016/j.biopha.2022.112974

Article  CAS  PubMed  Google Scholar 

Ling Y, Liu J, Qian J et al (2020) Recent advances in multi-target drugs targeting protein kinases and histone deacetylases in cancer therapy. Curr Med Chem 27:7264–7288. https://doi.org/10.2174/0929867327666200102115720

Article  CAS  PubMed  Google Scholar 

Zimmermann GR, Lehár J, Keith CT (2007) Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov Today 12:34–42. https://doi.org/10.1016/j.drudis.2006.11.008

Article  CAS  PubMed  Google Scholar 

Tao L, Zhu F, Xu F et al (2015) Co-targeting cancer drug escape pathways confers clinical advantage for multi-target anticancer drugs. Pharmacol Res 102:123–131. https://doi.org/10.1016/j.phrs.2015.09.019

Article  CAS  PubMed  Google Scholar 

Doostmohammadi A, Jooya H, Ghorbanian K et al (2024) Potentials and future perspectives of multi-target drugs in cancer treatment: the next generation anti-cancer agents. Cell Commun Signal 22:228. https://doi.org/10.1186/s12964-024-01607-9

Article  PubMed  PubMed Central  Google Scholar 

Laudadio E, Mangano L, Minnelli C (2024) Chemical Scaffolds for the clinical development of mutant-selective and reversible fourth-generation EGFR-TKIs in NSCLC. ACS Chem Biol 19:839–854. https://doi.org/10.1021/acschembio.4c00028

Article  CAS  PubMed  Google Scholar 

Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

Article  PubMed  Google Scholar 

Mohan A, Garg A, Gupta A et al (2020) Clinical profile of lung cancer in North India: A 10-year analysis of 1862 patients from a tertiary care center. Lung India 37:190. https://doi.org/10.4103/lungindia.lungindia_333_19

Article  PubMed  PubMed Central  Google Scholar 

Reck M, Carbone DP, Garassino M, Barlesi F (2021) Targeting KRAS in non-small-cell lung cancer: recent progress and new approaches. Ann Oncol 32:1101–1110. https://doi.org/10.1016/j.annonc.2021.06.001

Article  CAS  PubMed  Google Scholar 

Li J, Zhao L, Pan Y et al (2020) SMYD3 overexpression indicates poor prognosis and promotes cell proliferation, migration and invasion in non-small cell lung cancer. Int J Oncol 57:756–766. https://doi.org/10.3892/ijo.2020.5095

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu J, Ao L, Jia W et al (2024) GFPT2 controls immune evasion in EGFR-mutated non-small cell lung cancer. Biol Sci. https://doi.org/10.21203/rs.3.rs-4203208/v1

Article  Google Scholar 

Amin A, Gali-Muhtasib H, Ocker M, Schneider-Stock R (2009) Overview of major classes of plant-derived anticancer drugs. Int J Biomed Sci: IJBS 5:1

CAS  PubMed  PubMed Central  Google Scholar 

Siddiqui AJ, Jahan S, Singh R et al (2022) Plants in anticancer drug discovery: from molecular mechanism to chemoprevention. Biomed Res Int 2022:1–18. https://doi.org/10.1155/2022/5425485

Article  CAS  Google Scholar 

Morgan CA, Hurley TD (2015) Development of a high-throughput in vitro assay to identify selective inhibitors for human ALDH1A1. Chem Biol Interact 234:29–37. https://doi.org/10.1016/j.cbi.2014.10.028

Article  CAS  PubMed  Google Scholar 

Ruegenberg S, Horn M, Pichlo C et al (2020) Loss of GFAT-1 feedback regulation activates the hexosamine pathway that modulates protein homeostasis. Nat Commun 11:687. https://doi.org/10.1038/s41467-020-14524-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu W, Liu N, Qiao Q et al (2016) Structural basis for substrate preference of SMYD3, a SET domain-containing Protein Lysine Methyltransferase. J Biol Chem 291:9173–9180. https://doi.org/10.1074/jbc.M115.709832

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hunter JC, Gurbani D, Ficarro SB et al (2014) In situ selectivity profiling and crystal structure of SML-8-73-1, an active site inhibitor of oncogenic K-Ras G12C. Proc Natl Acad Sci 111:8895–8900. https://doi.org/10.1073/pnas.1404639111

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dallakyan S, Olson AJ (2015) Small-molecule library screening by docking with PyRx. Methods Mol Biol 1263:243–250. https://doi.org/10.1007/978-1-4939-2269-7_19/COVER

Article  CAS  PubMed  Google Scholar 

de Sousa ACC, Combrinck JM, Maepa K, Egan TJ (2020) Virtual screening as a tool to discover new β-haematin inhibitors with activity against malaria parasites. Sci Rep 10:3374. https://doi.org/10.1038/s41598-020-60221-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Egbuna C, Patrick-Iwuanyanwu KC, Onyeike EN et al (2022) FMS-like tyrosine kinase-3 (FLT3) inhibitors with better binding affinity and ADMET properties than sorafenib and gilteritinib against acute myeloid leukemia: in silico studies. J Biomol Struct Dyn 40:12248–12259. https://doi.org/10.1080/07391102.2021.1969286

Article  CAS  PubMed  Google Scholar 

Yen S-C, Chen L-C, Huang H-L et al (2022) Identification of a dual FLT3 and MNK2 inhibitor for acute myeloid leukemia treatment using a structure-based virtual screening approach. Bioorg Chem 121:105675. https://doi.org/10.1016/j.bioorg.2022.105675

Article  CAS  PubMed  Google Scholar 

Ravi L, Kumar KA, G R SK, et al (2024) Behenic Acid as a multi-target inhibiting antibacterial phytochemical against Vibrio parahaemolyticus and Aeromonas hydrophila for effective management of aquaculture infections: an in-silico, in-vitro & in-vivo experimentation. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2024.2317988

Article  PubMed  Google Scholar 

Ravi L, Kumar KA, Kumari GRS et al (2024) Stearyl palmitate a multi-target inhibitor against breast cancer: in-silico, in-vitro & in-vivo approach. J Biomol Struct Dyn 42:10057–10074. https://doi.org/10.1080/07391102.2023.2255271

Article  CAS  PubMed  Google Scholar 

Lilkova E (2015) The PyMOL Molecular Graphics System, Version 2.0 Schrodinger, LLC

Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. “Protein Engineering, Design and Selection” 8:127–134. https://doi.org/10.1093/protein/8.2.127

Article  CAS  Google Scholar 

Bergdorf M, Avi R-M, Xinyi G, et al (2021) Desmond/GPU performance as of April 2021. DE Shaw Research, Tech Rep

Akter R, Yang DU, Ahn JC et al (2023) Comparison of in vitro estrogenic activity of Polygoni multiflori Radix and Cynanchi wilfordii Radix via the enhancement of ERα/β expression in MCF7 cells. Molecules 28:2199. https://doi.org/10.3390/molecules28052199

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim J-S, Lim H, Seo J-Y et al (2022) GPR183 regulates 7α,25-Dihydroxycholesterol-induced Oxiapoptophagy in L929 mouse fibroblast cell. Molecules 27:4798. https://doi.org/10.3390/molecules27154798

Comments (0)

No login
gif