Prenatal diagnosis of cerebellar hypoplasia in fetal ultrasound using deep learning under the constraint of the anatomical structures of the cerebellum and cistern

Wang Yin, Jia Jia, Gao Ningning, Chen Xiaoli, Yue Jinzhuo (2023) Developmental characteristics of width of cerebellomedullary cistern in fetus and its differences in gender. Journal of Clinical Medicine in Practice 27:117–121

Google Scholar 

Pertl, B., Eder, S., Stern, C., & Verheyen, S (2019) The fetal posterior fossa on prenatal ultrasound imaging: normal longitudinal development and posterior fossa anomalies. Die Strukturen der Fossa posterior in der fetalen Neurosonografie: Entwicklung und Fehlbildungsdiagnostik. Ultraschall in der Medizin (Stuttgart, Germany: 1980) 40: 692–721. https://doi.org/10.1055/a-1015-0157.

D’Antonio F, Khalil A, Garel C, Pilu G, Rizzo G, Lerman-Sagie T, Bhide A, Thilaganathan B, Manzoli L, Papageorghiou AT (2016) Systematic review and meta-analysis of isolated posterior fossa malformations on prenatal imaging (part 2): neurodevelopmental outcome. Ultrasound Obstet Gynecol 48:28–37

Article  PubMed  Google Scholar 

Araujo Júnior E, Martins WP, Rolo LC, Pires CR, Zanforlin Filho SM (2014) Normative data for fetal cisterna magna length measurement between 18 and 24 weeks of pregnancy. Childs Nerv Syst 30:9–12

Article  PubMed  Google Scholar 

Ma XL, Zhang GF, Wang XZ, Tian XM, Zhou Q, Shen MH, Zhong T, Ding N (2019) Quantitative study on the development of fetal ventricles and cisterna magna in second and third trimesters with MRI. Zhonghua Yi Xue Za Zhi 99:2569–2574

CAS  PubMed  Google Scholar 

Salroo IN, Mir MF, Raina ZA, Bashir S, Bhat MR (2024) Significance of trans-cerebellar diameter over other biometric parameters in the estimation of gestational age. Asian J Med Sci 15:120–125

Article  Google Scholar 

Yachnis AT, Rorke LB, Trojanowski JQ (1994) Cerebellar dysplasias in humans: development and possible relationship to glial and primitive neuroectodermal tumors of the cerebellar vermis. J Neuropathol Exp Neurol 53:61–71

Article  CAS  PubMed  Google Scholar 

Volpe JJ (2009) Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 8:110–124

Article  PubMed  PubMed Central  Google Scholar 

Woo J (2002) A short history of the development of ultrasound in obstetrics and gynecology. History of Ultrasound in Obstetrics and Gynecology 3:1–25

Google Scholar 

Meng L, Zhao D, Yang Z, Wang B (2020) Automatic display of fetal brain planes and automatic measurements of fetal brain parameters by transabdominal three-dimensional ultrasound. Journal of clinical ultrasound: JCU 48:82–88

Article  PubMed  Google Scholar 

Yu J, Li DP, Liao QM (2011) Color constancy-based visibility enhancement of color images in low-light conditions. Acta Autom Sin 37:923–931

Google Scholar 

Han H, Han C, Huang L, Lan T, Xue X (2020) Irradiance restoration based shadow compensation approach for high resolution multispectral satellite remote sensing images. Sensors 20:6053

Article  PubMed  PubMed Central  Google Scholar 

Akkus Z, Cai J, Boonrod A, Zeinoddini A, Weston AD, Philbrick KA, Erickson BJ (2019) A survey of deep-learning applications in ultrasound: artificial intelligence–powered ultrasound for improving clinical workflow. J Am Coll Radiol 16:1318–1328

Article  PubMed  Google Scholar 

Wüest A, Surbek D, Wiest R, Weisstanner C, Bonel H, Steinlin M, Raio L, Tutschek B (2017) Enlarged posterior fossa on prenatal imaging: differential diagnosis, associated anomalies and postnatal outcome. Acta Obstet Gynecol Scand 96:837–843

Article  PubMed  Google Scholar 

Xu, G., Wang, X., Wu, X., Leng, X., & Xu, Y. (2024). Development of skip connection in deep neural networks for computer vision and medical image analysis: a survey. arXiv preprint arXiv:2405.01725.

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444

Article  CAS  PubMed  Google Scholar 

Maraci, M.A., Napolitano, R., Papageorghiou, A., Noble, JA (2014) Object classification in an ultrasound video using lp-sift features. In: Menze, B., Langs, G., Montillo, A., Kelm, M., Mller, H., Zhang, S., Cai, W.T., Metaxas, D. (Eds.), Medical computer vision: algorithms for big data. In: Lecture Notes in Computer Science, 8848. Springer International Publishing, pp. 71–81. 10.1007/ 978–3–319–13972–2_7.

Gofer S, Haik O, Bardin R, Gilboa Y, Perlman S (2022) Machine learning algorithms for classification of first-trimester fetal brain ultrasound images. J Ultrasound Med 41:1773–1779

Article  PubMed  Google Scholar 

Xie HN, Wang N, He M, Zhang LH, Cai HM, Xian JB, Lin MF, Zheng J, Yang YZ (2020) Using deep-learning algorithms to classify fetal brain ultrasound images as normal or abnormal. Ultrasound Obstet Gynecol 56:579–587

Article  CAS  PubMed  Google Scholar 

Yaqub, M., Kelly, B., Papageorghiou, A.T., Noble, J.A. (2015). Guided random forests for identification of key fetal anatomy and image categorization in ultrasound scans. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds) Medical image computing and computer-assisted intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science (), vol 9351. Springer, Cham. https://doi.org/10.1007/978-3-319-24574-4_82.

Carneiro G, Georgescu B, Good S, Comaniciu D (2008) Detection and measurement of fetal anatomies from ultrasound images using a constrained probabilistic boosting tree. IEEE Trans Med Imaging 27:1342–1355

Article  PubMed  Google Scholar 

Burgos-Artizzu XP, Coronado-Gutiérrez D, Valenzuela-Alcaraz B, Bonet-Carne E, Eixarch E, Crispi F, Gratacós E (2020) Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes. Sci Rep 10:10200

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin Q, Zhou Y, Shi S, Zhang Y, Yin S, Liu X, Peng Q, Huang S, Jiang Y, Cui C, She R, Xu J, Dong F (2022) How much can AI see in early pregnancy: a multi-center study of fetus head characterization in week 10–14 in ultrasound using deep learning. Comput Methods Programs Biomed 226:107170

Article  PubMed  Google Scholar 

Jassim, S., & Basheer, S. (2025). AI vs. traditional ultrasound study in congenital heart defect detection: a systematic review. medRxiv, 2025–04.

Ryou, H.; Yaqub, M.; Cavallaro, A.; Roseman, F.; Papageorghiou, A.; Noble, J.A. Automated 3D ultrasound biometry planes extraction for first trimester fetal assessment; Springer: Berlin/Heidelberg, Germany, 2016; pp. 196–204.

Salomon LJ, Alfirevic Z, Berghella V, Bilardo CM, Chalouhi GE, Da Silva Costa F, Hernandez-Andrade E, Malinger G, Munoz H, Paladini D, Prefumo F, Sotiriadis A, Toi A, Lee W (2022) ISUOG practice guidelines (updated): performance of the routine mid-trimester fetal ultrasound scan. Ultrasound Obstet Gynecol 59:840–856

Article  CAS  PubMed  Google Scholar 

Singh D, Nagaraj S, Mashouri P, Drysdale E, Fischer J, Goldenberg A, Brudno M (2022) Assessment of machine learning–based medical directives to expedite care in pediatric emergency medicine. JAMA Netw Open 5:e222599–e222599

Article  PubMed  PubMed Central  Google Scholar 

Szegedy C, Vanhoucke V, Ioffe S, Shlens J, & Wojna Z (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2818–2826).

Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409. https://doi.org/10.48550/arXiv.1409.1556.

G. Xu, X. Wu, X. Zhang, W. Liao, S. Chen (2022) LGNet: local and global representation learning for fast biomedical image segmentation. J Innov Opt Health Sci

Dosovitskiy, A. et al (ICLR, 2021) An image is worth 16x16 words: transformers for image recognition at scale. In International Conference on Learning Representations

Mao, A., Mohri, M., and Zhong, Y (2023) Cross-entropy loss functions: theoretical analysis and applications. arXiv preprint. arXiv:2304.07288

Pluym ID, Afshar Y, Holliman K, Kwan L, Bolagani A, Mok T, Silver B, Ramirez E, Han CS, Platt LD (2021) Accuracy of automated three-dimensional ultrasound imaging technique for fetal head biometry. Ultrasound Obstet Gynecol 57:798–803

Article  CAS  PubMed  Google Scholar 

Li Y, Zhu XL, Pan MZ, Ma Z, Tao GW (2022) Are fetal gender and gestational age related to the size of cisterna magna? J Matern Fetal Neonatal Med 35:4312–4317

Article  PubMed  Google Scholar 

Lin YJ, Chiu NC, Chen HJ, Huang JY, Ho CS (2021) Cranial ultrasonographic screening findings among healthy neonates and their association with neurodevelopmental outcomes. Pediatr Neonatol 62:158–164

Article  PubMed  Google Scholar 

Castellanos Gutierrez AS, Schmitz R, Hammer K, Braun J, Oelmeier K, Köster HA, Möllers M, Klockenbusch W, Steinhard J, Kubiak K (2022) Central nervous system biometry in fetuses with and without congenital heart diseases. Arch Gynecol Obstet 306:1885–1890

Article  PubMed  PubMed Central  Google Scholar 

Wang, Y., Li, G. F., Liu, R. K., Li, L., DU, X. Q., Li, G. L., & Chen, S (2020) Zhongguo dang dai er ke za zhi = Chinese journal of contemporary pediatrics 22: 936–941. https://doi.org/10.7499/j.issn.1008-8830.2003284.

Schlatterer SD, Sanapo L, du Plessis AJ, Whitehead MT, Mulkey SB (2021) The role of fetal MRI for suspected anomalies of the posterior fossa. Pediatr Neurol 117:10–18

Article  PubMed  Google Scholar 

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778.

Mingxing Tan and Quoc Le (2021) Efficientnetv2: smaller models and faster training. In ICML

Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo (2021) “Swin transformer: hierarchical vision transformer using shifted windows,” in Proceedings of the IEEE/CVF international conference on computer vision, pp. 10012–10022

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra (Feb. 2020) Grad-CAM: visual explanations from deep networks via gradient-based localization. Int J Comput Vis 128:336–359 arXiv: 1610.02391.

Ceschin R, Zahner A, Reynolds W, Gaesser J, Zuccoli G, Lo CW, Gopalakrishnan V, Panigrahy A (2018) A computational framework for the detection of subcortical brain dysmaturation in neonatal MRI using 3D convolutional neural networks. Neuroimage 178:183–197

Article  PubMed  Google Scholar 

Lin M, He X, Guo H, He M, Zhang L, Xian J, Lei T, Xu Q, Zheng J, Feng J, Hao C, Yang Y, Wang N, Xie H (2022) Use of real-time artificial intelligence in detection of abnormal image patterns in standard sonographic reference planes in screening for fetal intracranial malformations. Ultrasound Obstet Gynecol 59:304–316

Article  CAS  PubMed  Google Scholar 

Sahli H, Mouelhi A, Ben Slama A, Sayadi M, Rachdi R (2019) Supervised classification approach of biometric measures for automatic fetal defect screening in head ultrasound images. J Med Eng Technol 43:279–286

Article  PubMed  Google Scholar 

Xie B, Lei T, Wang N, Cai H, Xian J, He M, Zhang L, Xie H (2020) Computer-aided diagnosis for fetal brain ultrasound images using deep convolutional neural networks. Int J Comput Assist Radiol Surg 15:1303–1312

Comments (0)

No login
gif