Association of GLP1-Receptor Agonists with Risk of Hepatocellular Carcinoma: A Retrospective Cohort Study

Das SR, Everett BM, Birtcher KK, et al. 2020 Expert consensus decision pathway on novel therapies for cardiovascular risk reduction in patients with type 2 diabetes: A Report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2020;76(9):1117–45. https://doi.org/10.1016/j.jacc.2020.05.037.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krishnan A, Suryanarayanan SK, Mansi IA. Utilization of glucagon-like peptide-1 receptor agonist and dipeptidyl peptidase-4 inhibitors at the Veterans Health Administration. J Pharm Technol. 2024;40(5):223–9. https://doi.org/10.1177/87551225241266773.

Article  CAS  PubMed  Google Scholar 

Sun Y, Fan L, Meng J, Zhang F, Zhang D, Mei Q. Should GLP-1 receptor agonists be used with caution in high risk population for colorectal cancer? Med Hypotheses. 2014;82(3):255–6. https://doi.org/10.1016/j.mehy.2013.11.034.

Article  CAS  PubMed  Google Scholar 

Koehler JA, Baggio LL, Yusta B, et al. GLP-1R agonists promote normal and neoplastic intestinal growth through mechanisms requiring Fgf7. Cell Metab. 2015;21(3):379–91. https://doi.org/10.1016/j.cmet.2015.02.005.

Article  CAS  PubMed  Google Scholar 

Vangoitsenhoven R, Mathieu C, Van der Schueren B. GLP1 and cancer: friend or foe? Endocr Relat Cancer. 2012;19(5):F77-88. https://doi.org/10.1530/erc-12-0111.

Article  CAS  PubMed  Google Scholar 

Bezin J, Gouverneur A, Pénichon M, et al. GLP-1 receptor agonists and the risk of thyroid cancer. Diabetes Care. 2022;46(2):384–90. https://doi.org/10.2337/dc22-1148.

Article  CAS  Google Scholar 

Thompson CA, Stürmer T. Putting GLP-1 RAs and thyroid cancer in context: additional evidence and remaining doubts. Diabetes Care. 2023;46(2):249–51. https://doi.org/10.2337/dci22-0052.

Article  CAS  PubMed  Google Scholar 

He L, Wang J, Ping F, et al. Association of glucagon-like peptide-1 receptor agonist use with risk of gallbladder and biliary diseases: a systematic review and meta-analysis of randomized clinical trials. JAMA Intern Med. 2022;182(5):513–9. https://doi.org/10.1001/jamainternmed.2022.0338.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bolen SD, Maruthur NM. Glucagon-like peptide-1 receptor agonists and risk of breast cancer. BMJ. 2016;355: i5519. https://doi.org/10.1136/bmj.i5519.

Article  PubMed  Google Scholar 

Hicks BM, Yin H, Yu OH, Pollak MN, Platt RW, Azoulay L. Glucagon-like peptide-1 analogues and risk of breast cancer in women with type 2 diabetes: population based cohort study using the UK Clinical Practice Research Datalink. BMJ. 2016;355:5340. https://doi.org/10.1136/bmj.i5340.

Article  Google Scholar 

Filippatos TD, Panagiotopoulou TV, Elisaf MS. Adverse Effects of GLP-1 Receptor Agonists. Rev Diabet Stud Fall-Winter. 2014;11(3–4):202–30. https://doi.org/10.1900/rds.2014.11.202.

Article  Google Scholar 

Wang J, Kim CH. differential risk of cancer associated with glucagon-like peptide-1 receptor agonists: analysis of real-world databases. Endocr Res. 2022;47(1):18–25. https://doi.org/10.1080/07435800.2021.1955255.

Article  CAS  PubMed  Google Scholar 

Wang L, Xu R, Kaelber DC, Berger NA. Glucagon-like peptide 1 receptor agonists and 13 obesity-associated cancers in patients with type 2 diabetes. JAMA Netw Open. 2024;7(7): e2421305. https://doi.org/10.1001/jamanetworkopen.2024.21305.

Article  PubMed  PubMed Central  Google Scholar 

Figlioli G, Piovani D, Peppas S, et al. Glucagon-like peptide-1 receptor agonists and risk of gastrointestinal cancers: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2024;208: 107401. https://doi.org/10.1016/j.phrs.2024.107401.

Article  CAS  PubMed  Google Scholar 

Liu Y, Zhang X, Chai S, Zhao X, Ji L. Risk of malignant neoplasia with glucagon-like peptide-1 receptor agonist treatment in patients with type 2 diabetes: a meta-analysis. J Diabetes Res. 2019;2019:1534365. https://doi.org/10.1155/2019/1534365.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gupta NA, Mells J, Dunham RM, et al. Glucagon-like peptide-1 receptor is present on human hepatocytes and has a direct role in decreasing hepatic steatosis in vitro by modulating elements of the insulin signaling pathway. Hepatology. 2010;51(5):1584–92. https://doi.org/10.1002/hep.23569.

Article  CAS  PubMed  Google Scholar 

Akinyemiju T, Abera S, Ahmed M, et al. The Burden of Primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: results from the Global Burden of Disease Study 2015. JAMA Oncol. 2017;3(12):1683–91. https://doi.org/10.1001/jamaoncol.2017.3055.

Article  PubMed  PubMed Central  Google Scholar 

Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.

Article  CAS  PubMed  Google Scholar 

VA Informatics and Computing Infrastructure (VINCI), VA HSR RES 13-457, U.S. Department of Veterans Affairs. (2008). Retrieved [date], from https://vincicentral.vinci.med.va.gov.

National Healthcare Quality and Disparities Report: Chartbook on Healthcare for Veterans [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US); 2020 Nov. OVERVIEW OF VHA PATIENT, VETERAN, AND NON-VETERAN POPULATIONS AND CHARACTERISTICS. Available from: https://www.ncbi.nlm.nih.gov/books/NBK578553/. Accessed 19 Mar 2025.

Lund JL, Richardson DB, Sturmer T. The active comparator, new user study design in pharmacoepidemiology: historical foundations and contemporary application. Curr Epidemiol Rep. 2015;2(4):221–8. https://doi.org/10.1007/s40471-015-0053-5.

Article  PubMed  PubMed Central  Google Scholar 

Elixhauser A, Steiner C, Palmer L. Clinical Classifications Software (CCS) for ICD-9-CM. Databases and Related Tools from the Healthcare Cost and Utilization Project (HCUP) U.S. Agency for Healthcare Research and Quality; 2012:Appendix A. Accessed 01/01/2012. http://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp. Accessed 16 Mar 2015.

Hagström H, Adams LA, Allen AM, et al. Administrative Coding in Electronic Health Care Record-Based Research of NAFLD: An Expert Panel Consensus Statement. Hepatology. 2021;74(1):474–82. https://doi.org/10.1002/hep.31726.

Article  PubMed  Google Scholar 

Lo Re III V, Lim JK, Goetz MB, et al. Validity of diagnostic codes and liver-related laboratory abnormalities to identify hepatic decompensation events in the Veterans Aging Cohort Study. Pharmacoepidemiol Drug Saf. 2011;20(7):689–99. https://doi.org/10.1002/pds.2148.

Article  Google Scholar 

Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J Clin Epidemiol. 1992;45(6):613–9.

Article  CAS  PubMed  Google Scholar 

Orkaby AR, Nussbaum L, Ho YL, et al. The burden of frailty among U.S. veterans and its association with mortality, 2002–2012. J Gerontol A Biol Sci Med Sci. 2019;74(8):1257–64. https://doi.org/10.1093/gerona/gly232.

Article  PubMed  Google Scholar 

Semaglutide Injection Criteria for Use July 2022 VA Pharmacy Benefits Management Services, Medical Advisory Panel, and VISN Pharmacist Executives. Available at: https://www.va.gov/formularyadvisor/DOC_PDF/CFU_Semaglutide_OZEMPIC_Jul22a.pdf. Accessed 22 Dec 2023.

Schneeweiss S, Wang PS, Avorn J, Glynn RJ. Improved comorbidity adjustment for predicting mortality in Medicare populations. Health Serv Res. 2003;38(4):1103–20. https://doi.org/10.1111/1475-6773.00165.

Article  PubMed  PubMed Central  Google Scholar 

Quan H, Li B, Couris CM, et al. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am J Epidemiol. 2011;173(6):676–82. https://doi.org/10.1093/aje/kwq433.

Article  PubMed  Google Scholar 

Becker S, Ichino A. Estimation of average treatment effects based on propensity scores. Stand Genomic Sci. 2002;2(4):358–77.

Google Scholar 

Leuven E, Sianesi B. PSMATCH2: Stata module to perform full Mahalanobis and propensity score matching, common support graphing, and covariate imbalance testing. 2003. available at: http://ideas.repec.org/c/boc/bocode/s432001.html. version 4.0.5 ed. 2003.

Austin PC. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat Med. 2009;28(25):3083–107. https://doi.org/10.1002/sim.3697.

Article  PubMed  PubMed Central  Google Scholar 

Zhang S, Sidra F, Alvarez CA, Kinaan M, Lingvay I, Mansi IA. Healthcare utilization, mortality, and cardiovascular events following GLP1-RA initiation in chronic kidney disease. Nat Commun. 2024;15(1):10623. https://doi.org/10.1038/s41467-024-54009-3.

Article  CAS 

Comments (0)

No login
gif